MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Unicode version

Theorem alephsing 8704
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if  ( aleph `  A )  <  A, then  ( aleph `  A
) is singular. Conversely, if  ( aleph `  A ) is regular (i.e. weakly inaccessible), then  ( aleph `  A )  =  A, so  A has to be rather large (see alephfp 8537). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )

Proof of Theorem alephsing
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8494 . . . . . . 7  |-  aleph  Fn  On
2 fnfun 5691 . . . . . . 7  |-  ( aleph  Fn  On  ->  Fun  aleph )
31, 2ax-mp 5 . . . . . 6  |-  Fun  aleph
4 simpl 458 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  _V )
5 resfunexg 6145 . . . . . 6  |-  ( ( Fun  aleph  /\  A  e.  _V )  ->  ( aleph  |`  A )  e.  _V )
63, 4, 5sylancr 667 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  e. 
_V )
7 limelon 5505 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
8 onss 6631 . . . . . . . 8  |-  ( A  e.  On  ->  A  C_  On )
97, 8syl 17 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  C_  On )
10 fnssres 5707 . . . . . . 7  |-  ( (
aleph  Fn  On  /\  A  C_  On )  ->  ( aleph 
|`  A )  Fn  A )
111, 9, 10sylancr 667 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  Fn  A )
12 fvres 5895 . . . . . . . . . . 11  |-  ( y  e.  A  ->  (
( aleph  |`  A ) `  y )  =  (
aleph `  y ) )
1312adantl 467 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  =  ( aleph `  y )
)
14 alephord2i 8506 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
1514imp 430 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( aleph `  y )  e.  ( aleph `  A )
)
1613, 15eqeltrd 2517 . . . . . . . . 9  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
177, 16sylan 473 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
1817ralrimiva 2846 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )
19 fnfvrnss 6066 . . . . . . 7  |-  ( ( ( aleph  |`  A )  Fn  A  /\  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A ) )
2011, 18, 19syl2anc 665 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A )
)
21 df-f 5605 . . . . . 6  |-  ( (
aleph  |`  A ) : A --> ( aleph `  A
)  <->  ( ( aleph  |`  A )  Fn  A  /\  ran  ( aleph  |`  A ) 
C_  ( aleph `  A
) ) )
2211, 20, 21sylanbrc 668 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A ) : A --> ( aleph `  A
) )
23 alephsmo 8531 . . . . . 6  |-  Smo  aleph
24 fndm 5693 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
251, 24ax-mp 5 . . . . . . 7  |-  dom  aleph  =  On
267, 25syl6eleqr 2528 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  dom  aleph )
27 smores 7079 . . . . . 6  |-  ( ( Smo  aleph  /\  A  e.  dom  aleph )  ->  Smo  ( aleph  |`  A ) )
2823, 26, 27sylancr 667 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  Smo  ( aleph  |`  A ) )
29 alephlim 8496 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ y  e.  A  ( aleph `  y )
)
3029eleq2d 2499 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  <->  x  e.  U_ y  e.  A  (
aleph `  y ) ) )
31 eliun 4307 . . . . . . . 8  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  <->  E. y  e.  A  x  e.  ( aleph `  y ) )
32 alephon 8498 . . . . . . . . . 10  |-  ( aleph `  y )  e.  On
3332onelssi 5550 . . . . . . . . 9  |-  ( x  e.  ( aleph `  y
)  ->  x  C_  ( aleph `  y ) )
3433reximi 2900 . . . . . . . 8  |-  ( E. y  e.  A  x  e.  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3531, 34sylbi 198 . . . . . . 7  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3630, 35syl6bi 231 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  ->  E. y  e.  A  x  C_  ( aleph `  y ) ) )
3736ralrimiv 2844 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) )
38 feq1 5728 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( f : A --> ( aleph `  A
)  <->  ( aleph  |`  A ) : A --> ( aleph `  A ) ) )
39 smoeq 7077 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( Smo  f  <->  Smo  ( aleph  |`  A ) ) )
40 fveq1 5880 . . . . . . . . . . . 12  |-  ( f  =  ( aleph  |`  A )  ->  ( f `  y )  =  ( ( aleph  |`  A ) `  y ) )
4140, 12sylan9eq 2490 . . . . . . . . . . 11  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
f `  y )  =  ( aleph `  y
) )
4241sseq2d 3498 . . . . . . . . . 10  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
x  C_  ( f `  y )  <->  x  C_  ( aleph `  y ) ) )
4342rexbidva 2943 . . . . . . . . 9  |-  ( f  =  ( aleph  |`  A )  ->  ( E. y  e.  A  x  C_  (
f `  y )  <->  E. y  e.  A  x 
C_  ( aleph `  y
) ) )
4443ralbidv 2871 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y )  <->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) ) )
4538, 39, 443anbi123d 1335 . . . . . . 7  |-  ( f  =  ( aleph  |`  A )  ->  ( ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) )  <->  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) ) )
4645spcegv 3173 . . . . . 6  |-  ( (
aleph  |`  A )  e. 
_V  ->  ( ( (
aleph  |`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) )  ->  E. f ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) ) ) )
4746imp 430 . . . . 5  |-  ( ( ( aleph  |`  A )  e. 
_V  /\  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
486, 22, 28, 37, 47syl13anc 1266 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
49 alephon 8498 . . . . 5  |-  ( aleph `  A )  e.  On
50 cfcof 8702 . . . . 5  |-  ( ( ( aleph `  A )  e.  On  /\  A  e.  On )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5149, 7, 50sylancr 667 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5248, 51mpd 15 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( cf `  ( aleph `  A
) )  =  ( cf `  A ) )
5352expcom 436 . 2  |-  ( Lim 
A  ->  ( A  e.  _V  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
54 cf0 8679 . . 3  |-  ( cf `  (/) )  =  (/)
55 fvprc 5875 . . . 4  |-  ( -.  A  e.  _V  ->  (
aleph `  A )  =  (/) )
5655fveq2d 5885 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  (/) ) )
57 fvprc 5875 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  A )  =  (/) )
5854, 56, 573eqtr4a 2496 . 2  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  A
) )
5953, 58pm2.61d1 162 1  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1659    e. wcel 1870   A.wral 2782   E.wrex 2783   _Vcvv 3087    C_ wss 3442   (/)c0 3767   U_ciun 4302   dom cdm 4854   ran crn 4855    |` cres 4856   Oncon0 5442   Lim wlim 5443   Fun wfun 5595    Fn wfn 5596   -->wf 5597   ` cfv 5601   Smo wsmo 7072   alephcale 8369   cfccf 8370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-smo 7073  df-recs 7098  df-rdg 7136  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-oi 8025  df-har 8073  df-card 8372  df-aleph 8373  df-cf 8374  df-acn 8375
This theorem is referenced by:  alephom  9008  winafp  9121
  Copyright terms: Public domain W3C validator