MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Visualization version   Unicode version

Theorem alephsing 8706
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if  ( aleph `  A )  <  A, then  ( aleph `  A
) is singular. Conversely, if  ( aleph `  A ) is regular (i.e. weakly inaccessible), then  ( aleph `  A )  =  A, so  A has to be rather large (see alephfp 8539). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )

Proof of Theorem alephsing
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8496 . . . . . . 7  |-  aleph  Fn  On
2 fnfun 5673 . . . . . . 7  |-  ( aleph  Fn  On  ->  Fun  aleph )
31, 2ax-mp 5 . . . . . 6  |-  Fun  aleph
4 simpl 459 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  _V )
5 resfunexg 6130 . . . . . 6  |-  ( ( Fun  aleph  /\  A  e.  _V )  ->  ( aleph  |`  A )  e.  _V )
63, 4, 5sylancr 669 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  e. 
_V )
7 limelon 5486 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
8 onss 6617 . . . . . . . 8  |-  ( A  e.  On  ->  A  C_  On )
97, 8syl 17 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  C_  On )
10 fnssres 5689 . . . . . . 7  |-  ( (
aleph  Fn  On  /\  A  C_  On )  ->  ( aleph 
|`  A )  Fn  A )
111, 9, 10sylancr 669 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  Fn  A )
12 fvres 5879 . . . . . . . . . . 11  |-  ( y  e.  A  ->  (
( aleph  |`  A ) `  y )  =  (
aleph `  y ) )
1312adantl 468 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  =  ( aleph `  y )
)
14 alephord2i 8508 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
1514imp 431 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( aleph `  y )  e.  ( aleph `  A )
)
1613, 15eqeltrd 2529 . . . . . . . . 9  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
177, 16sylan 474 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
1817ralrimiva 2802 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )
19 fnfvrnss 6051 . . . . . . 7  |-  ( ( ( aleph  |`  A )  Fn  A  /\  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A ) )
2011, 18, 19syl2anc 667 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A )
)
21 df-f 5586 . . . . . 6  |-  ( (
aleph  |`  A ) : A --> ( aleph `  A
)  <->  ( ( aleph  |`  A )  Fn  A  /\  ran  ( aleph  |`  A ) 
C_  ( aleph `  A
) ) )
2211, 20, 21sylanbrc 670 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A ) : A --> ( aleph `  A
) )
23 alephsmo 8533 . . . . . 6  |-  Smo  aleph
24 fndm 5675 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
251, 24ax-mp 5 . . . . . . 7  |-  dom  aleph  =  On
267, 25syl6eleqr 2540 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  dom  aleph )
27 smores 7071 . . . . . 6  |-  ( ( Smo  aleph  /\  A  e.  dom  aleph )  ->  Smo  ( aleph  |`  A ) )
2823, 26, 27sylancr 669 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  Smo  ( aleph  |`  A ) )
29 alephlim 8498 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ y  e.  A  ( aleph `  y )
)
3029eleq2d 2514 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  <->  x  e.  U_ y  e.  A  (
aleph `  y ) ) )
31 eliun 4283 . . . . . . . 8  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  <->  E. y  e.  A  x  e.  ( aleph `  y ) )
32 alephon 8500 . . . . . . . . . 10  |-  ( aleph `  y )  e.  On
3332onelssi 5531 . . . . . . . . 9  |-  ( x  e.  ( aleph `  y
)  ->  x  C_  ( aleph `  y ) )
3433reximi 2855 . . . . . . . 8  |-  ( E. y  e.  A  x  e.  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3531, 34sylbi 199 . . . . . . 7  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3630, 35syl6bi 232 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  ->  E. y  e.  A  x  C_  ( aleph `  y ) ) )
3736ralrimiv 2800 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) )
38 feq1 5710 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( f : A --> ( aleph `  A
)  <->  ( aleph  |`  A ) : A --> ( aleph `  A ) ) )
39 smoeq 7069 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( Smo  f  <->  Smo  ( aleph  |`  A ) ) )
40 fveq1 5864 . . . . . . . . . . . 12  |-  ( f  =  ( aleph  |`  A )  ->  ( f `  y )  =  ( ( aleph  |`  A ) `  y ) )
4140, 12sylan9eq 2505 . . . . . . . . . . 11  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
f `  y )  =  ( aleph `  y
) )
4241sseq2d 3460 . . . . . . . . . 10  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
x  C_  ( f `  y )  <->  x  C_  ( aleph `  y ) ) )
4342rexbidva 2898 . . . . . . . . 9  |-  ( f  =  ( aleph  |`  A )  ->  ( E. y  e.  A  x  C_  (
f `  y )  <->  E. y  e.  A  x 
C_  ( aleph `  y
) ) )
4443ralbidv 2827 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y )  <->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) ) )
4538, 39, 443anbi123d 1339 . . . . . . 7  |-  ( f  =  ( aleph  |`  A )  ->  ( ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) )  <->  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) ) )
4645spcegv 3135 . . . . . 6  |-  ( (
aleph  |`  A )  e. 
_V  ->  ( ( (
aleph  |`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) )  ->  E. f ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) ) ) )
4746imp 431 . . . . 5  |-  ( ( ( aleph  |`  A )  e. 
_V  /\  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
486, 22, 28, 37, 47syl13anc 1270 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
49 alephon 8500 . . . . 5  |-  ( aleph `  A )  e.  On
50 cfcof 8704 . . . . 5  |-  ( ( ( aleph `  A )  e.  On  /\  A  e.  On )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5149, 7, 50sylancr 669 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5248, 51mpd 15 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( cf `  ( aleph `  A
) )  =  ( cf `  A ) )
5352expcom 437 . 2  |-  ( Lim 
A  ->  ( A  e.  _V  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
54 cf0 8681 . . 3  |-  ( cf `  (/) )  =  (/)
55 fvprc 5859 . . . 4  |-  ( -.  A  e.  _V  ->  (
aleph `  A )  =  (/) )
5655fveq2d 5869 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  (/) ) )
57 fvprc 5859 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  A )  =  (/) )
5854, 56, 573eqtr4a 2511 . 2  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  A
) )
5953, 58pm2.61d1 163 1  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887   A.wral 2737   E.wrex 2738   _Vcvv 3045    C_ wss 3404   (/)c0 3731   U_ciun 4278   dom cdm 4834   ran crn 4835    |` cres 4836   Oncon0 5423   Lim wlim 5424   Fun wfun 5576    Fn wfn 5577   -->wf 5578   ` cfv 5582   Smo wsmo 7064   alephcale 8370   cfccf 8371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-smo 7065  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-oi 8025  df-har 8073  df-card 8373  df-aleph 8374  df-cf 8375  df-acn 8376
This theorem is referenced by:  alephom  9010  winafp  9122
  Copyright terms: Public domain W3C validator