MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Unicode version

Theorem alephsing 8656
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if  ( aleph `  A )  <  A, then  ( aleph `  A
) is singular. Conversely, if  ( aleph `  A ) is regular (i.e. weakly inaccessible), then  ( aleph `  A )  =  A, so  A has to be rather large (see alephfp 8489). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )

Proof of Theorem alephsing
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8446 . . . . . . 7  |-  aleph  Fn  On
2 fnfun 5678 . . . . . . 7  |-  ( aleph  Fn  On  ->  Fun  aleph )
31, 2ax-mp 5 . . . . . 6  |-  Fun  aleph
4 simpl 457 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  _V )
5 resfunexg 6126 . . . . . 6  |-  ( ( Fun  aleph  /\  A  e.  _V )  ->  ( aleph  |`  A )  e.  _V )
63, 4, 5sylancr 663 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  e. 
_V )
7 limelon 4941 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
8 onss 6610 . . . . . . . 8  |-  ( A  e.  On  ->  A  C_  On )
97, 8syl 16 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  C_  On )
10 fnssres 5694 . . . . . . 7  |-  ( (
aleph  Fn  On  /\  A  C_  On )  ->  ( aleph 
|`  A )  Fn  A )
111, 9, 10sylancr 663 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A )  Fn  A )
12 fvres 5880 . . . . . . . . . . 11  |-  ( y  e.  A  ->  (
( aleph  |`  A ) `  y )  =  (
aleph `  y ) )
1312adantl 466 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  =  ( aleph `  y )
)
14 alephord2i 8458 . . . . . . . . . . 11  |-  ( A  e.  On  ->  (
y  e.  A  -> 
( aleph `  y )  e.  ( aleph `  A )
) )
1514imp 429 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( aleph `  y )  e.  ( aleph `  A )
)
1613, 15eqeltrd 2555 . . . . . . . . 9  |-  ( ( A  e.  On  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
177, 16sylan 471 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\ 
Lim  A )  /\  y  e.  A )  ->  ( ( aleph  |`  A ) `
 y )  e.  ( aleph `  A )
)
1817ralrimiva 2878 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )
19 fnfvrnss 6049 . . . . . . 7  |-  ( ( ( aleph  |`  A )  Fn  A  /\  A. y  e.  A  ( ( aleph 
|`  A ) `  y )  e.  (
aleph `  A ) )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A ) )
2011, 18, 19syl2anc 661 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ran  ( aleph  |`  A )  C_  ( aleph `  A )
)
21 df-f 5592 . . . . . 6  |-  ( (
aleph  |`  A ) : A --> ( aleph `  A
)  <->  ( ( aleph  |`  A )  Fn  A  /\  ran  ( aleph  |`  A ) 
C_  ( aleph `  A
) ) )
2211, 20, 21sylanbrc 664 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph 
|`  A ) : A --> ( aleph `  A
) )
23 alephsmo 8483 . . . . . 6  |-  Smo  aleph
24 fndm 5680 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
251, 24ax-mp 5 . . . . . . 7  |-  dom  aleph  =  On
267, 25syl6eleqr 2566 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  dom  aleph )
27 smores 7023 . . . . . 6  |-  ( ( Smo  aleph  /\  A  e.  dom  aleph )  ->  Smo  ( aleph  |`  A ) )
2823, 26, 27sylancr 663 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  Smo  ( aleph  |`  A ) )
29 alephlim 8448 . . . . . . . 8  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ y  e.  A  ( aleph `  y )
)
3029eleq2d 2537 . . . . . . 7  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  <->  x  e.  U_ y  e.  A  (
aleph `  y ) ) )
31 eliun 4330 . . . . . . . 8  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  <->  E. y  e.  A  x  e.  ( aleph `  y ) )
32 alephon 8450 . . . . . . . . . 10  |-  ( aleph `  y )  e.  On
3332onelssi 4986 . . . . . . . . 9  |-  ( x  e.  ( aleph `  y
)  ->  x  C_  ( aleph `  y ) )
3433reximi 2932 . . . . . . . 8  |-  ( E. y  e.  A  x  e.  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3531, 34sylbi 195 . . . . . . 7  |-  ( x  e.  U_ y  e.  A  ( aleph `  y
)  ->  E. y  e.  A  x  C_  ( aleph `  y ) )
3630, 35syl6bi 228 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
x  e.  ( aleph `  A )  ->  E. y  e.  A  x  C_  ( aleph `  y ) ) )
3736ralrimiv 2876 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) )
38 feq1 5713 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( f : A --> ( aleph `  A
)  <->  ( aleph  |`  A ) : A --> ( aleph `  A ) ) )
39 smoeq 7021 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( Smo  f  <->  Smo  ( aleph  |`  A ) ) )
40 fveq1 5865 . . . . . . . . . . . 12  |-  ( f  =  ( aleph  |`  A )  ->  ( f `  y )  =  ( ( aleph  |`  A ) `  y ) )
4140, 12sylan9eq 2528 . . . . . . . . . . 11  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
f `  y )  =  ( aleph `  y
) )
4241sseq2d 3532 . . . . . . . . . 10  |-  ( ( f  =  ( aleph  |`  A )  /\  y  e.  A )  ->  (
x  C_  ( f `  y )  <->  x  C_  ( aleph `  y ) ) )
4342rexbidva 2970 . . . . . . . . 9  |-  ( f  =  ( aleph  |`  A )  ->  ( E. y  e.  A  x  C_  (
f `  y )  <->  E. y  e.  A  x 
C_  ( aleph `  y
) ) )
4443ralbidv 2903 . . . . . . . 8  |-  ( f  =  ( aleph  |`  A )  ->  ( A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y )  <->  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y
) ) )
4538, 39, 443anbi123d 1299 . . . . . . 7  |-  ( f  =  ( aleph  |`  A )  ->  ( ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) )  <->  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) ) )
4645spcegv 3199 . . . . . 6  |-  ( (
aleph  |`  A )  e. 
_V  ->  ( ( (
aleph  |`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) )  ->  E. f ( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( f `  y ) ) ) )
4746imp 429 . . . . 5  |-  ( ( ( aleph  |`  A )  e. 
_V  /\  ( ( aleph 
|`  A ) : A --> ( aleph `  A
)  /\  Smo  ( aleph  |`  A )  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  ( aleph `  y ) ) )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
486, 22, 28, 37, 47syl13anc 1230 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  E. f
( f : A --> ( aleph `  A )  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
) )
49 alephon 8450 . . . . 5  |-  ( aleph `  A )  e.  On
50 cfcof 8654 . . . . 5  |-  ( ( ( aleph `  A )  e.  On  /\  A  e.  On )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5149, 7, 50sylancr 663 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( E. f ( f : A --> ( aleph `  A
)  /\  Smo  f  /\  A. x  e.  ( aleph `  A ) E. y  e.  A  x  C_  (
f `  y )
)  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
5248, 51mpd 15 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( cf `  ( aleph `  A
) )  =  ( cf `  A ) )
5352expcom 435 . 2  |-  ( Lim 
A  ->  ( A  e.  _V  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) ) )
54 cf0 8631 . . 3  |-  ( cf `  (/) )  =  (/)
55 fvprc 5860 . . . 4  |-  ( -.  A  e.  _V  ->  (
aleph `  A )  =  (/) )
5655fveq2d 5870 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  (/) ) )
57 fvprc 5860 . . 3  |-  ( -.  A  e.  _V  ->  ( cf `  A )  =  (/) )
5854, 56, 573eqtr4a 2534 . 2  |-  ( -.  A  e.  _V  ->  ( cf `  ( aleph `  A ) )  =  ( cf `  A
) )
5953, 58pm2.61d1 159 1  |-  ( Lim 
A  ->  ( cf `  ( aleph `  A )
)  =  ( cf `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   U_ciun 4325   Oncon0 4878   Lim wlim 4879   dom cdm 4999   ran crn 5000    |` cres 5001   Fun wfun 5582    Fn wfn 5583   -->wf 5584   ` cfv 5588   Smo wsmo 7016   alephcale 8317   cfccf 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-smo 7017  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-oi 7935  df-har 7984  df-card 8320  df-aleph 8321  df-cf 8322  df-acn 8323
This theorem is referenced by:  alephom  8960  winafp  9075
  Copyright terms: Public domain W3C validator