MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordi Structured version   Unicode version

Theorem alephordi 8347
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephordi  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
aleph `  A )  ~< 
( aleph `  B )
) )

Proof of Theorem alephordi
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2524 . . 3  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
2 fveq2 5791 . . . 4  |-  ( x  =  (/)  ->  ( aleph `  x )  =  (
aleph `  (/) ) )
32breq2d 4404 . . 3  |-  ( x  =  (/)  ->  ( (
aleph `  A )  ~< 
( aleph `  x )  <->  (
aleph `  A )  ~< 
( aleph `  (/) ) ) )
41, 3imbi12d 320 . 2  |-  ( x  =  (/)  ->  ( ( A  e.  x  -> 
( aleph `  A )  ~<  ( aleph `  x )
)  <->  ( A  e.  (/)  ->  ( aleph `  A
)  ~<  ( aleph `  (/) ) ) ) )
5 eleq2 2524 . . 3  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
6 fveq2 5791 . . . 4  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
76breq2d 4404 . . 3  |-  ( x  =  y  ->  (
( aleph `  A )  ~<  ( aleph `  x )  <->  (
aleph `  A )  ~< 
( aleph `  y )
) )
85, 7imbi12d 320 . 2  |-  ( x  =  y  ->  (
( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x )
)  <->  ( A  e.  y  ->  ( aleph `  A )  ~<  ( aleph `  y ) ) ) )
9 eleq2 2524 . . 3  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
10 fveq2 5791 . . . 4  |-  ( x  =  suc  y  -> 
( aleph `  x )  =  ( aleph `  suc  y ) )
1110breq2d 4404 . . 3  |-  ( x  =  suc  y  -> 
( ( aleph `  A
)  ~<  ( aleph `  x
)  <->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) ) )
129, 11imbi12d 320 . 2  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x ) )  <-> 
( A  e.  suc  y  ->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) ) ) )
13 eleq2 2524 . . 3  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
14 fveq2 5791 . . . 4  |-  ( x  =  B  ->  ( aleph `  x )  =  ( aleph `  B )
)
1514breq2d 4404 . . 3  |-  ( x  =  B  ->  (
( aleph `  A )  ~<  ( aleph `  x )  <->  (
aleph `  A )  ~< 
( aleph `  B )
) )
1613, 15imbi12d 320 . 2  |-  ( x  =  B  ->  (
( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x )
)  <->  ( A  e.  B  ->  ( aleph `  A )  ~<  ( aleph `  B ) ) ) )
17 noel 3741 . . 3  |-  -.  A  e.  (/)
1817pm2.21i 131 . 2  |-  ( A  e.  (/)  ->  ( aleph `  A )  ~<  ( aleph `  (/) ) )
19 vex 3073 . . . . 5  |-  y  e. 
_V
2019elsuc2 4889 . . . 4  |-  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) )
21 alephordilem1 8346 . . . . . . . . 9  |-  ( y  e.  On  ->  ( aleph `  y )  ~< 
( aleph `  suc  y ) )
22 sdomtr 7551 . . . . . . . . 9  |-  ( ( ( aleph `  A )  ~<  ( aleph `  y )  /\  ( aleph `  y )  ~<  ( aleph `  suc  y ) )  ->  ( aleph `  A )  ~<  ( aleph `  suc  y ) )
2321, 22sylan2 474 . . . . . . . 8  |-  ( ( ( aleph `  A )  ~<  ( aleph `  y )  /\  y  e.  On )  ->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) )
2423expcom 435 . . . . . . 7  |-  ( y  e.  On  ->  (
( aleph `  A )  ~<  ( aleph `  y )  ->  ( aleph `  A )  ~<  ( aleph `  suc  y ) ) )
2524imim2d 52 . . . . . 6  |-  ( y  e.  On  ->  (
( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( A  e.  y  ->  (
aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
2625com23 78 . . . . 5  |-  ( y  e.  On  ->  ( A  e.  y  ->  ( ( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
27 fveq2 5791 . . . . . . . . 9  |-  ( A  =  y  ->  ( aleph `  A )  =  ( aleph `  y )
)
2827breq1d 4402 . . . . . . . 8  |-  ( A  =  y  ->  (
( aleph `  A )  ~<  ( aleph `  suc  y )  <-> 
( aleph `  y )  ~<  ( aleph `  suc  y ) ) )
2921, 28syl5ibr 221 . . . . . . 7  |-  ( A  =  y  ->  (
y  e.  On  ->  (
aleph `  A )  ~< 
( aleph `  suc  y ) ) )
3029a1d 25 . . . . . 6  |-  ( A  =  y  ->  (
( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  (
y  e.  On  ->  (
aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
3130com3r 79 . . . . 5  |-  ( y  e.  On  ->  ( A  =  y  ->  ( ( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
3226, 31jaod 380 . . . 4  |-  ( y  e.  On  ->  (
( A  e.  y  \/  A  =  y )  ->  ( ( A  e.  y  ->  (
aleph `  A )  ~< 
( aleph `  y )
)  ->  ( aleph `  A )  ~<  ( aleph `  suc  y ) ) ) )
3320, 32syl5bi 217 . . 3  |-  ( y  e.  On  ->  ( A  e.  suc  y  -> 
( ( A  e.  y  ->  ( aleph `  A )  ~<  ( aleph `  y ) )  ->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) ) ) )
3433com23 78 . 2  |-  ( y  e.  On  ->  (
( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( A  e.  suc  y  -> 
( aleph `  A )  ~<  ( aleph `  suc  y ) ) ) )
35 fvex 5801 . . . . . . 7  |-  ( aleph `  x )  e.  _V
3635a1i 11 . . . . . 6  |-  ( Lim  x  ->  ( aleph `  x )  e.  _V )
37 fveq2 5791 . . . . . . . 8  |-  ( w  =  A  ->  ( aleph `  w )  =  ( aleph `  A )
)
3837ssiun2s 4314 . . . . . . 7  |-  ( A  e.  x  ->  ( aleph `  A )  C_  U_ w  e.  x  (
aleph `  w ) )
39 vex 3073 . . . . . . . . 9  |-  x  e. 
_V
40 alephlim 8340 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( aleph `  x )  = 
U_ w  e.  x  ( aleph `  w )
)
4139, 40mpan 670 . . . . . . . 8  |-  ( Lim  x  ->  ( aleph `  x )  =  U_ w  e.  x  ( aleph `  w ) )
4241sseq2d 3484 . . . . . . 7  |-  ( Lim  x  ->  ( ( aleph `  A )  C_  ( aleph `  x )  <->  (
aleph `  A )  C_  U_ w  e.  x  (
aleph `  w ) ) )
4338, 42syl5ibr 221 . . . . . 6  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph `  A )  C_  ( aleph `  x ) ) )
44 ssdomg 7457 . . . . . 6  |-  ( (
aleph `  x )  e. 
_V  ->  ( ( aleph `  A )  C_  ( aleph `  x )  -> 
( aleph `  A )  ~<_  ( aleph `  x )
) )
4536, 43, 44sylsyld 56 . . . . 5  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph `  A )  ~<_  ( aleph `  x ) ) )
46 limsuc 6562 . . . . . . . . . 10  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
47 fveq2 5791 . . . . . . . . . . . . 13  |-  ( w  =  suc  A  -> 
( aleph `  w )  =  ( aleph `  suc  A ) )
4847ssiun2s 4314 . . . . . . . . . . . 12  |-  ( suc 
A  e.  x  -> 
( aleph `  suc  A ) 
C_  U_ w  e.  x  ( aleph `  w )
)
4941sseq2d 3484 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( ( aleph `  suc  A ) 
C_  ( aleph `  x
)  <->  ( aleph `  suc  A )  C_  U_ w  e.  x  ( aleph `  w
) ) )
5048, 49syl5ibr 221 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( suc  A  e.  x  ->  ( aleph `  suc  A ) 
C_  ( aleph `  x
) ) )
51 ssdomg 7457 . . . . . . . . . . 11  |-  ( (
aleph `  x )  e. 
_V  ->  ( ( aleph ` 
suc  A )  C_  ( aleph `  x )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  x )
) )
5236, 50, 51sylsyld 56 . . . . . . . . . 10  |-  ( Lim  x  ->  ( suc  A  e.  x  ->  ( aleph `  suc  A )  ~<_  ( aleph `  x )
) )
5346, 52sylbid 215 . . . . . . . . 9  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph ` 
suc  A )  ~<_  (
aleph `  x ) ) )
5453imp 429 . . . . . . . 8  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  x )
)
55 domnsym 7539 . . . . . . . 8  |-  ( (
aleph `  suc  A )  ~<_  ( aleph `  x )  ->  -.  ( aleph `  x
)  ~<  ( aleph `  suc  A ) )
5654, 55syl 16 . . . . . . 7  |-  ( ( Lim  x  /\  A  e.  x )  ->  -.  ( aleph `  x )  ~<  ( aleph `  suc  A ) )
57 limelon 4882 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
5839, 57mpan 670 . . . . . . . . 9  |-  ( Lim  x  ->  x  e.  On )
59 onelon 4844 . . . . . . . . 9  |-  ( ( x  e.  On  /\  A  e.  x )  ->  A  e.  On )
6058, 59sylan 471 . . . . . . . 8  |-  ( ( Lim  x  /\  A  e.  x )  ->  A  e.  On )
61 ensym 7460 . . . . . . . . 9  |-  ( (
aleph `  A )  ~~  ( aleph `  x )  ->  ( aleph `  x )  ~~  ( aleph `  A )
)
62 alephordilem1 8346 . . . . . . . . 9  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( aleph `  suc  A ) )
63 ensdomtr 7549 . . . . . . . . . 10  |-  ( ( ( aleph `  x )  ~~  ( aleph `  A )  /\  ( aleph `  A )  ~<  ( aleph `  suc  A ) )  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) )
6463ex 434 . . . . . . . . 9  |-  ( (
aleph `  x )  ~~  ( aleph `  A )  ->  ( ( aleph `  A
)  ~<  ( aleph `  suc  A )  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) ) )
6561, 62, 64syl2im 38 . . . . . . . 8  |-  ( (
aleph `  A )  ~~  ( aleph `  x )  ->  ( A  e.  On  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) ) )
6660, 65syl5com 30 . . . . . . 7  |-  ( ( Lim  x  /\  A  e.  x )  ->  (
( aleph `  A )  ~~  ( aleph `  x )  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) ) )
6756, 66mtod 177 . . . . . 6  |-  ( ( Lim  x  /\  A  e.  x )  ->  -.  ( aleph `  A )  ~~  ( aleph `  x )
)
6867ex 434 . . . . 5  |-  ( Lim  x  ->  ( A  e.  x  ->  -.  ( aleph `  A )  ~~  ( aleph `  x )
) )
6945, 68jcad 533 . . . 4  |-  ( Lim  x  ->  ( A  e.  x  ->  ( (
aleph `  A )  ~<_  (
aleph `  x )  /\  -.  ( aleph `  A )  ~~  ( aleph `  x )
) ) )
70 brsdom 7434 . . . 4  |-  ( (
aleph `  A )  ~< 
( aleph `  x )  <->  ( ( aleph `  A )  ~<_  ( aleph `  x )  /\  -.  ( aleph `  A
)  ~~  ( aleph `  x ) ) )
7169, 70syl6ibr 227 . . 3  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x ) ) )
7271a1d 25 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( A  e.  y  ->  (
aleph `  A )  ~< 
( aleph `  y )
)  ->  ( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x ) ) ) )
734, 8, 12, 16, 18, 34, 72tfinds 6572 1  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
aleph `  A )  ~< 
( aleph `  B )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   _Vcvv 3070    C_ wss 3428   (/)c0 3737   U_ciun 4271   class class class wbr 4392   Oncon0 4819   Lim wlim 4820   suc csuc 4821   ` cfv 5518    ~~ cen 7409    ~<_ cdom 7410    ~< csdm 7411   alephcale 8209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-om 6579  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-oi 7827  df-har 7876  df-card 8212  df-aleph 8213
This theorem is referenced by:  alephord  8348  alephval2  8839
  Copyright terms: Public domain W3C validator