MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordi Structured version   Visualization version   Unicode version

Theorem alephordi 8523
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephordi  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
aleph `  A )  ~< 
( aleph `  B )
) )

Proof of Theorem alephordi
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2538 . . 3  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
2 fveq2 5879 . . . 4  |-  ( x  =  (/)  ->  ( aleph `  x )  =  (
aleph `  (/) ) )
32breq2d 4407 . . 3  |-  ( x  =  (/)  ->  ( (
aleph `  A )  ~< 
( aleph `  x )  <->  (
aleph `  A )  ~< 
( aleph `  (/) ) ) )
41, 3imbi12d 327 . 2  |-  ( x  =  (/)  ->  ( ( A  e.  x  -> 
( aleph `  A )  ~<  ( aleph `  x )
)  <->  ( A  e.  (/)  ->  ( aleph `  A
)  ~<  ( aleph `  (/) ) ) ) )
5 eleq2 2538 . . 3  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
6 fveq2 5879 . . . 4  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
76breq2d 4407 . . 3  |-  ( x  =  y  ->  (
( aleph `  A )  ~<  ( aleph `  x )  <->  (
aleph `  A )  ~< 
( aleph `  y )
) )
85, 7imbi12d 327 . 2  |-  ( x  =  y  ->  (
( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x )
)  <->  ( A  e.  y  ->  ( aleph `  A )  ~<  ( aleph `  y ) ) ) )
9 eleq2 2538 . . 3  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
10 fveq2 5879 . . . 4  |-  ( x  =  suc  y  -> 
( aleph `  x )  =  ( aleph `  suc  y ) )
1110breq2d 4407 . . 3  |-  ( x  =  suc  y  -> 
( ( aleph `  A
)  ~<  ( aleph `  x
)  <->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) ) )
129, 11imbi12d 327 . 2  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x ) )  <-> 
( A  e.  suc  y  ->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) ) ) )
13 eleq2 2538 . . 3  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
14 fveq2 5879 . . . 4  |-  ( x  =  B  ->  ( aleph `  x )  =  ( aleph `  B )
)
1514breq2d 4407 . . 3  |-  ( x  =  B  ->  (
( aleph `  A )  ~<  ( aleph `  x )  <->  (
aleph `  A )  ~< 
( aleph `  B )
) )
1613, 15imbi12d 327 . 2  |-  ( x  =  B  ->  (
( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x )
)  <->  ( A  e.  B  ->  ( aleph `  A )  ~<  ( aleph `  B ) ) ) )
17 noel 3726 . . 3  |-  -.  A  e.  (/)
1817pm2.21i 136 . 2  |-  ( A  e.  (/)  ->  ( aleph `  A )  ~<  ( aleph `  (/) ) )
19 vex 3034 . . . . 5  |-  y  e. 
_V
2019elsuc2 5500 . . . 4  |-  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) )
21 alephordilem1 8522 . . . . . . . . 9  |-  ( y  e.  On  ->  ( aleph `  y )  ~< 
( aleph `  suc  y ) )
22 sdomtr 7728 . . . . . . . . 9  |-  ( ( ( aleph `  A )  ~<  ( aleph `  y )  /\  ( aleph `  y )  ~<  ( aleph `  suc  y ) )  ->  ( aleph `  A )  ~<  ( aleph `  suc  y ) )
2321, 22sylan2 482 . . . . . . . 8  |-  ( ( ( aleph `  A )  ~<  ( aleph `  y )  /\  y  e.  On )  ->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) )
2423expcom 442 . . . . . . 7  |-  ( y  e.  On  ->  (
( aleph `  A )  ~<  ( aleph `  y )  ->  ( aleph `  A )  ~<  ( aleph `  suc  y ) ) )
2524imim2d 53 . . . . . 6  |-  ( y  e.  On  ->  (
( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( A  e.  y  ->  (
aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
2625com23 80 . . . . 5  |-  ( y  e.  On  ->  ( A  e.  y  ->  ( ( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
27 fveq2 5879 . . . . . . . . 9  |-  ( A  =  y  ->  ( aleph `  A )  =  ( aleph `  y )
)
2827breq1d 4405 . . . . . . . 8  |-  ( A  =  y  ->  (
( aleph `  A )  ~<  ( aleph `  suc  y )  <-> 
( aleph `  y )  ~<  ( aleph `  suc  y ) ) )
2921, 28syl5ibr 229 . . . . . . 7  |-  ( A  =  y  ->  (
y  e.  On  ->  (
aleph `  A )  ~< 
( aleph `  suc  y ) ) )
3029a1d 25 . . . . . 6  |-  ( A  =  y  ->  (
( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  (
y  e.  On  ->  (
aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
3130com3r 81 . . . . 5  |-  ( y  e.  On  ->  ( A  =  y  ->  ( ( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( aleph `  A )  ~< 
( aleph `  suc  y ) ) ) )
3226, 31jaod 387 . . . 4  |-  ( y  e.  On  ->  (
( A  e.  y  \/  A  =  y )  ->  ( ( A  e.  y  ->  (
aleph `  A )  ~< 
( aleph `  y )
)  ->  ( aleph `  A )  ~<  ( aleph `  suc  y ) ) ) )
3320, 32syl5bi 225 . . 3  |-  ( y  e.  On  ->  ( A  e.  suc  y  -> 
( ( A  e.  y  ->  ( aleph `  A )  ~<  ( aleph `  y ) )  ->  ( aleph `  A
)  ~<  ( aleph `  suc  y ) ) ) )
3433com23 80 . 2  |-  ( y  e.  On  ->  (
( A  e.  y  ->  ( aleph `  A
)  ~<  ( aleph `  y
) )  ->  ( A  e.  suc  y  -> 
( aleph `  A )  ~<  ( aleph `  suc  y ) ) ) )
35 fvex 5889 . . . . . . 7  |-  ( aleph `  x )  e.  _V
3635a1i 11 . . . . . 6  |-  ( Lim  x  ->  ( aleph `  x )  e.  _V )
37 fveq2 5879 . . . . . . . 8  |-  ( w  =  A  ->  ( aleph `  w )  =  ( aleph `  A )
)
3837ssiun2s 4313 . . . . . . 7  |-  ( A  e.  x  ->  ( aleph `  A )  C_  U_ w  e.  x  (
aleph `  w ) )
39 vex 3034 . . . . . . . . 9  |-  x  e. 
_V
40 alephlim 8516 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( aleph `  x )  = 
U_ w  e.  x  ( aleph `  w )
)
4139, 40mpan 684 . . . . . . . 8  |-  ( Lim  x  ->  ( aleph `  x )  =  U_ w  e.  x  ( aleph `  w ) )
4241sseq2d 3446 . . . . . . 7  |-  ( Lim  x  ->  ( ( aleph `  A )  C_  ( aleph `  x )  <->  (
aleph `  A )  C_  U_ w  e.  x  (
aleph `  w ) ) )
4338, 42syl5ibr 229 . . . . . 6  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph `  A )  C_  ( aleph `  x ) ) )
44 ssdomg 7633 . . . . . 6  |-  ( (
aleph `  x )  e. 
_V  ->  ( ( aleph `  A )  C_  ( aleph `  x )  -> 
( aleph `  A )  ~<_  ( aleph `  x )
) )
4536, 43, 44sylsyld 57 . . . . 5  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph `  A )  ~<_  ( aleph `  x ) ) )
46 limsuc 6695 . . . . . . . . . 10  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
47 fveq2 5879 . . . . . . . . . . . . 13  |-  ( w  =  suc  A  -> 
( aleph `  w )  =  ( aleph `  suc  A ) )
4847ssiun2s 4313 . . . . . . . . . . . 12  |-  ( suc 
A  e.  x  -> 
( aleph `  suc  A ) 
C_  U_ w  e.  x  ( aleph `  w )
)
4941sseq2d 3446 . . . . . . . . . . . 12  |-  ( Lim  x  ->  ( ( aleph `  suc  A ) 
C_  ( aleph `  x
)  <->  ( aleph `  suc  A )  C_  U_ w  e.  x  ( aleph `  w
) ) )
5048, 49syl5ibr 229 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( suc  A  e.  x  ->  ( aleph `  suc  A ) 
C_  ( aleph `  x
) ) )
51 ssdomg 7633 . . . . . . . . . . 11  |-  ( (
aleph `  x )  e. 
_V  ->  ( ( aleph ` 
suc  A )  C_  ( aleph `  x )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  x )
) )
5236, 50, 51sylsyld 57 . . . . . . . . . 10  |-  ( Lim  x  ->  ( suc  A  e.  x  ->  ( aleph `  suc  A )  ~<_  ( aleph `  x )
) )
5346, 52sylbid 223 . . . . . . . . 9  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph ` 
suc  A )  ~<_  (
aleph `  x ) ) )
5453imp 436 . . . . . . . 8  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( aleph `  suc  A )  ~<_  ( aleph `  x )
)
55 domnsym 7716 . . . . . . . 8  |-  ( (
aleph `  suc  A )  ~<_  ( aleph `  x )  ->  -.  ( aleph `  x
)  ~<  ( aleph `  suc  A ) )
5654, 55syl 17 . . . . . . 7  |-  ( ( Lim  x  /\  A  e.  x )  ->  -.  ( aleph `  x )  ~<  ( aleph `  suc  A ) )
57 limelon 5493 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
5839, 57mpan 684 . . . . . . . . 9  |-  ( Lim  x  ->  x  e.  On )
59 onelon 5455 . . . . . . . . 9  |-  ( ( x  e.  On  /\  A  e.  x )  ->  A  e.  On )
6058, 59sylan 479 . . . . . . . 8  |-  ( ( Lim  x  /\  A  e.  x )  ->  A  e.  On )
61 ensym 7636 . . . . . . . . 9  |-  ( (
aleph `  A )  ~~  ( aleph `  x )  ->  ( aleph `  x )  ~~  ( aleph `  A )
)
62 alephordilem1 8522 . . . . . . . . 9  |-  ( A  e.  On  ->  ( aleph `  A )  ~< 
( aleph `  suc  A ) )
63 ensdomtr 7726 . . . . . . . . . 10  |-  ( ( ( aleph `  x )  ~~  ( aleph `  A )  /\  ( aleph `  A )  ~<  ( aleph `  suc  A ) )  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) )
6463ex 441 . . . . . . . . 9  |-  ( (
aleph `  x )  ~~  ( aleph `  A )  ->  ( ( aleph `  A
)  ~<  ( aleph `  suc  A )  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) ) )
6561, 62, 64syl2im 38 . . . . . . . 8  |-  ( (
aleph `  A )  ~~  ( aleph `  x )  ->  ( A  e.  On  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) ) )
6660, 65syl5com 30 . . . . . . 7  |-  ( ( Lim  x  /\  A  e.  x )  ->  (
( aleph `  A )  ~~  ( aleph `  x )  ->  ( aleph `  x )  ~<  ( aleph `  suc  A ) ) )
6756, 66mtod 182 . . . . . 6  |-  ( ( Lim  x  /\  A  e.  x )  ->  -.  ( aleph `  A )  ~~  ( aleph `  x )
)
6867ex 441 . . . . 5  |-  ( Lim  x  ->  ( A  e.  x  ->  -.  ( aleph `  A )  ~~  ( aleph `  x )
) )
6945, 68jcad 542 . . . 4  |-  ( Lim  x  ->  ( A  e.  x  ->  ( (
aleph `  A )  ~<_  (
aleph `  x )  /\  -.  ( aleph `  A )  ~~  ( aleph `  x )
) ) )
70 brsdom 7610 . . . 4  |-  ( (
aleph `  A )  ~< 
( aleph `  x )  <->  ( ( aleph `  A )  ~<_  ( aleph `  x )  /\  -.  ( aleph `  A
)  ~~  ( aleph `  x ) ) )
7169, 70syl6ibr 235 . . 3  |-  ( Lim  x  ->  ( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x ) ) )
7271a1d 25 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( A  e.  y  ->  (
aleph `  A )  ~< 
( aleph `  y )
)  ->  ( A  e.  x  ->  ( aleph `  A )  ~<  ( aleph `  x ) ) ) )
734, 8, 12, 16, 18, 34, 72tfinds 6705 1  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
aleph `  A )  ~< 
( aleph `  B )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031    C_ wss 3390   (/)c0 3722   U_ciun 4269   class class class wbr 4395   Oncon0 5430   Lim wlim 5431   suc csuc 5432   ` cfv 5589    ~~ cen 7584    ~<_ cdom 7585    ~< csdm 7586   alephcale 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-oi 8043  df-har 8091  df-card 8391  df-aleph 8392
This theorem is referenced by:  alephord  8524  alephval2  9015
  Copyright terms: Public domain W3C validator