MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephnbtwn Structured version   Unicode version

Theorem alephnbtwn 8347
Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephnbtwn  |-  ( (
card `  B )  =  B  ->  -.  (
( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) )

Proof of Theorem alephnbtwn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 alephon 8345 . . . . . . . 8  |-  ( aleph `  A )  e.  On
2 id 22 . . . . . . . . . 10  |-  ( (
card `  B )  =  B  ->  ( card `  B )  =  B )
3 cardon 8220 . . . . . . . . . 10  |-  ( card `  B )  e.  On
42, 3syl6eqelr 2549 . . . . . . . . 9  |-  ( (
card `  B )  =  B  ->  B  e.  On )
5 onenon 8225 . . . . . . . . 9  |-  ( B  e.  On  ->  B  e.  dom  card )
64, 5syl 16 . . . . . . . 8  |-  ( (
card `  B )  =  B  ->  B  e. 
dom  card )
7 cardsdomel 8250 . . . . . . . 8  |-  ( ( ( aleph `  A )  e.  On  /\  B  e. 
dom  card )  ->  (
( aleph `  A )  ~<  B  <->  ( aleph `  A
)  e.  ( card `  B ) ) )
81, 6, 7sylancr 663 . . . . . . 7  |-  ( (
card `  B )  =  B  ->  ( (
aleph `  A )  ~<  B 
<->  ( aleph `  A )  e.  ( card `  B
) ) )
9 eleq2 2525 . . . . . . 7  |-  ( (
card `  B )  =  B  ->  ( (
aleph `  A )  e.  ( card `  B
)  <->  ( aleph `  A
)  e.  B ) )
108, 9bitrd 253 . . . . . 6  |-  ( (
card `  B )  =  B  ->  ( (
aleph `  A )  ~<  B 
<->  ( aleph `  A )  e.  B ) )
1110adantl 466 . . . . 5  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  (
( aleph `  A )  ~<  B  <->  ( aleph `  A
)  e.  B ) )
12 alephsuc 8344 . . . . . . . . . . 11  |-  ( A  e.  On  ->  ( aleph `  suc  A )  =  (har `  ( aleph `  A ) ) )
13 onenon 8225 . . . . . . . . . . . 12  |-  ( (
aleph `  A )  e.  On  ->  ( aleph `  A )  e.  dom  card )
14 harval2 8273 . . . . . . . . . . . 12  |-  ( (
aleph `  A )  e. 
dom  card  ->  (har `  ( aleph `  A ) )  =  |^| { x  e.  On  |  ( aleph `  A )  ~<  x } )
151, 13, 14mp2b 10 . . . . . . . . . . 11  |-  (har `  ( aleph `  A )
)  =  |^| { x  e.  On  |  ( aleph `  A )  ~<  x }
1612, 15syl6eq 2509 . . . . . . . . . 10  |-  ( A  e.  On  ->  ( aleph `  suc  A )  =  |^| { x  e.  On  |  ( aleph `  A )  ~<  x } )
1716eleq2d 2522 . . . . . . . . 9  |-  ( A  e.  On  ->  ( B  e.  ( aleph ` 
suc  A )  <->  B  e.  |^|
{ x  e.  On  |  ( aleph `  A
)  ~<  x } ) )
1817biimpd 207 . . . . . . . 8  |-  ( A  e.  On  ->  ( B  e.  ( aleph ` 
suc  A )  ->  B  e.  |^| { x  e.  On  |  ( aleph `  A )  ~<  x } ) )
19 breq2 4399 . . . . . . . . 9  |-  ( x  =  B  ->  (
( aleph `  A )  ~<  x  <->  ( aleph `  A
)  ~<  B ) )
2019onnminsb 6520 . . . . . . . 8  |-  ( B  e.  On  ->  ( B  e.  |^| { x  e.  On  |  ( aleph `  A )  ~<  x }  ->  -.  ( aleph `  A )  ~<  B ) )
2118, 20sylan9 657 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  e.  (
aleph `  suc  A )  ->  -.  ( aleph `  A )  ~<  B ) )
2221con2d 115 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  ~<  B  ->  -.  B  e.  ( aleph ` 
suc  A ) ) )
234, 22sylan2 474 . . . . 5  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  (
( aleph `  A )  ~<  B  ->  -.  B  e.  ( aleph `  suc  A ) ) )
2411, 23sylbird 235 . . . 4  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  (
( aleph `  A )  e.  B  ->  -.  B  e.  ( aleph `  suc  A ) ) )
25 imnan 422 . . . 4  |-  ( ( ( aleph `  A )  e.  B  ->  -.  B  e.  ( aleph `  suc  A ) )  <->  -.  ( ( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) )
2624, 25sylib 196 . . 3  |-  ( ( A  e.  On  /\  ( card `  B )  =  B )  ->  -.  ( ( aleph `  A
)  e.  B  /\  B  e.  ( aleph ` 
suc  A ) ) )
2726ex 434 . 2  |-  ( A  e.  On  ->  (
( card `  B )  =  B  ->  -.  (
( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) ) )
28 n0i 3745 . . . . . . 7  |-  ( B  e.  ( aleph `  suc  A )  ->  -.  ( aleph `  suc  A )  =  (/) )
29 alephfnon 8341 . . . . . . . . . 10  |-  aleph  Fn  On
30 fndm 5613 . . . . . . . . . 10  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
3129, 30ax-mp 5 . . . . . . . . 9  |-  dom  aleph  =  On
3231eleq2i 2530 . . . . . . . 8  |-  ( suc 
A  e.  dom  aleph  <->  suc  A  e.  On )
33 ndmfv 5818 . . . . . . . 8  |-  ( -. 
suc  A  e.  dom  aleph  ->  ( aleph `  suc  A )  =  (/) )
3432, 33sylnbir 307 . . . . . . 7  |-  ( -. 
suc  A  e.  On  ->  ( aleph `  suc  A )  =  (/) )
3528, 34nsyl2 127 . . . . . 6  |-  ( B  e.  ( aleph `  suc  A )  ->  suc  A  e.  On )
36 sucelon 6533 . . . . . 6  |-  ( A  e.  On  <->  suc  A  e.  On )
3735, 36sylibr 212 . . . . 5  |-  ( B  e.  ( aleph `  suc  A )  ->  A  e.  On )
3837adantl 466 . . . 4  |-  ( ( ( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) )  ->  A  e.  On )
3938con3i 135 . . 3  |-  ( -.  A  e.  On  ->  -.  ( ( aleph `  A
)  e.  B  /\  B  e.  ( aleph ` 
suc  A ) ) )
4039a1d 25 . 2  |-  ( -.  A  e.  On  ->  ( ( card `  B
)  =  B  ->  -.  ( ( aleph `  A
)  e.  B  /\  B  e.  ( aleph ` 
suc  A ) ) ) )
4127, 40pm2.61i 164 1  |-  ( (
card `  B )  =  B  ->  -.  (
( aleph `  A )  e.  B  /\  B  e.  ( aleph `  suc  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   {crab 2800   (/)c0 3740   |^|cint 4231   class class class wbr 4395   Oncon0 4822   suc csuc 4824   dom cdm 4943    Fn wfn 5516   ` cfv 5521    ~< csdm 7414  harchar 7877   cardccrd 8211   alephcale 8212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-om 6582  df-recs 6937  df-rdg 6971  df-er 7206  df-en 7416  df-dom 7417  df-sdom 7418  df-oi 7830  df-har 7879  df-card 8215  df-aleph 8216
This theorem is referenced by:  alephnbtwn2  8348
  Copyright terms: Public domain W3C validator