MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Structured version   Unicode version

Theorem alephle 8254
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 8275, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)

Proof of Theorem alephle
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3  |-  ( x  =  y  ->  x  =  y )
2 fveq2 5688 . . 3  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
31, 2sseq12d 3382 . 2  |-  ( x  =  y  ->  (
x  C_  ( aleph `  x )  <->  y  C_  ( aleph `  y )
) )
4 id 22 . . 3  |-  ( x  =  A  ->  x  =  A )
5 fveq2 5688 . . 3  |-  ( x  =  A  ->  ( aleph `  x )  =  ( aleph `  A )
)
64, 5sseq12d 3382 . 2  |-  ( x  =  A  ->  (
x  C_  ( aleph `  x )  <->  A  C_  ( aleph `  A ) ) )
7 alephord2i 8243 . . . . . 6  |-  ( x  e.  On  ->  (
y  e.  x  -> 
( aleph `  y )  e.  ( aleph `  x )
) )
87imp 429 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( aleph `  y )  e.  ( aleph `  x )
)
9 onelon 4740 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
10 alephon 8235 . . . . . 6  |-  ( aleph `  x )  e.  On
11 ontr2 4762 . . . . . 6  |-  ( ( y  e.  On  /\  ( aleph `  x )  e.  On )  ->  (
( y  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  x )
)  ->  y  e.  ( aleph `  x )
) )
129, 10, 11sylancl 657 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( ( y  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  x )
)  ->  y  e.  ( aleph `  x )
) )
138, 12mpan2d 669 . . . 4  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( y  C_  ( aleph `  y )  -> 
y  e.  ( aleph `  x ) ) )
1413ralimdva 2792 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  y  C_  ( aleph `  y
)  ->  A. y  e.  x  y  e.  ( aleph `  x )
) )
1510onirri 4821 . . . . 5  |-  -.  ( aleph `  x )  e.  ( aleph `  x )
16 eleq1 2501 . . . . . 6  |-  ( y  =  ( aleph `  x
)  ->  ( y  e.  ( aleph `  x )  <->  (
aleph `  x )  e.  ( aleph `  x )
) )
1716rspccv 3067 . . . . 5  |-  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  ( ( aleph `  x
)  e.  x  -> 
( aleph `  x )  e.  ( aleph `  x )
) )
1815, 17mtoi 178 . . . 4  |-  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  -.  ( aleph `  x
)  e.  x )
19 ontri1 4749 . . . . 5  |-  ( ( x  e.  On  /\  ( aleph `  x )  e.  On )  ->  (
x  C_  ( aleph `  x )  <->  -.  ( aleph `  x )  e.  x ) )
2010, 19mpan2 666 . . . 4  |-  ( x  e.  On  ->  (
x  C_  ( aleph `  x )  <->  -.  ( aleph `  x )  e.  x ) )
2118, 20syl5ibr 221 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  x  C_  ( aleph `  x )
) )
2214, 21syld 44 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  y  C_  ( aleph `  y
)  ->  x  C_  ( aleph `  x ) ) )
233, 6, 22tfis3 6467 1  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713    C_ wss 3325   Oncon0 4715   ` cfv 5415   alephcale 8102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-oi 7720  df-har 7769  df-card 8105  df-aleph 8106
This theorem is referenced by:  cardaleph  8255  alephfp  8274  winafp  8860
  Copyright terms: Public domain W3C validator