MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Structured version   Unicode version

Theorem alephle 8273
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 8294, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)

Proof of Theorem alephle
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3  |-  ( x  =  y  ->  x  =  y )
2 fveq2 5706 . . 3  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
31, 2sseq12d 3400 . 2  |-  ( x  =  y  ->  (
x  C_  ( aleph `  x )  <->  y  C_  ( aleph `  y )
) )
4 id 22 . . 3  |-  ( x  =  A  ->  x  =  A )
5 fveq2 5706 . . 3  |-  ( x  =  A  ->  ( aleph `  x )  =  ( aleph `  A )
)
64, 5sseq12d 3400 . 2  |-  ( x  =  A  ->  (
x  C_  ( aleph `  x )  <->  A  C_  ( aleph `  A ) ) )
7 alephord2i 8262 . . . . . 6  |-  ( x  e.  On  ->  (
y  e.  x  -> 
( aleph `  y )  e.  ( aleph `  x )
) )
87imp 429 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( aleph `  y )  e.  ( aleph `  x )
)
9 onelon 4759 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
10 alephon 8254 . . . . . 6  |-  ( aleph `  x )  e.  On
11 ontr2 4781 . . . . . 6  |-  ( ( y  e.  On  /\  ( aleph `  x )  e.  On )  ->  (
( y  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  x )
)  ->  y  e.  ( aleph `  x )
) )
129, 10, 11sylancl 662 . . . . 5  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( ( y  C_  ( aleph `  y )  /\  ( aleph `  y )  e.  ( aleph `  x )
)  ->  y  e.  ( aleph `  x )
) )
138, 12mpan2d 674 . . . 4  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( y  C_  ( aleph `  y )  -> 
y  e.  ( aleph `  x ) ) )
1413ralimdva 2809 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  y  C_  ( aleph `  y
)  ->  A. y  e.  x  y  e.  ( aleph `  x )
) )
1510onirri 4840 . . . . 5  |-  -.  ( aleph `  x )  e.  ( aleph `  x )
16 eleq1 2503 . . . . . 6  |-  ( y  =  ( aleph `  x
)  ->  ( y  e.  ( aleph `  x )  <->  (
aleph `  x )  e.  ( aleph `  x )
) )
1716rspccv 3085 . . . . 5  |-  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  ( ( aleph `  x
)  e.  x  -> 
( aleph `  x )  e.  ( aleph `  x )
) )
1815, 17mtoi 178 . . . 4  |-  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  -.  ( aleph `  x
)  e.  x )
19 ontri1 4768 . . . . 5  |-  ( ( x  e.  On  /\  ( aleph `  x )  e.  On )  ->  (
x  C_  ( aleph `  x )  <->  -.  ( aleph `  x )  e.  x ) )
2010, 19mpan2 671 . . . 4  |-  ( x  e.  On  ->  (
x  C_  ( aleph `  x )  <->  -.  ( aleph `  x )  e.  x ) )
2118, 20syl5ibr 221 . . 3  |-  ( x  e.  On  ->  ( A. y  e.  x  y  e.  ( aleph `  x )  ->  x  C_  ( aleph `  x )
) )
2214, 21syld 44 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  y  C_  ( aleph `  y
)  ->  x  C_  ( aleph `  x ) ) )
233, 6, 22tfis3 6483 1  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2730    C_ wss 3343   Oncon0 4734   ` cfv 5433   alephcale 8121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-om 6492  df-recs 6847  df-rdg 6881  df-er 7116  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-oi 7739  df-har 7788  df-card 8124  df-aleph 8125
This theorem is referenced by:  cardaleph  8274  alephfp  8293  winafp  8879
  Copyright terms: Public domain W3C validator