MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephiso Structured version   Unicode version

Theorem alephiso 8431
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
alephiso  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )

Proof of Theorem alephiso
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8398 . . . . . 6  |-  aleph  Fn  On
2 isinfcard 8425 . . . . . . . 8  |-  ( ( om  C_  x  /\  ( card `  x )  =  x )  <->  x  e.  ran  aleph )
32bicomi 202 . . . . . . 7  |-  ( x  e.  ran  aleph  <->  ( om  C_  x  /\  ( card `  x )  =  x ) )
43abbi2i 2535 . . . . . 6  |-  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
5 df-fo 5531 . . . . . 6  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph  Fn  On  /\  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
61, 4, 5mpbir2an 921 . . . . 5  |-  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
7 fof 5734 . . . . 5  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  ->  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )
86, 7ax-mp 5 . . . 4  |-  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
9 aleph11 8417 . . . . . 6  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  <->  y  =  z ) )
109biimpd 207 . . . . 5  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  ->  y  =  z ) )
1110rgen2a 2830 . . . 4  |-  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z )
12 dff13 6103 . . . 4  |-  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) }  /\  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z ) ) )
138, 11, 12mpbir2an 921 . . 3  |-  aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
14 df-f1o 5532 . . 3  |-  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
1513, 6, 14mpbir2an 921 . 2  |-  aleph : On -1-1-onto-> {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
16 alephord2 8409 . . . 4  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  e.  z  <-> 
( aleph `  y )  e.  ( aleph `  z )
) )
17 epel 4736 . . . 4  |-  ( y  _E  z  <->  y  e.  z )
18 fvex 5815 . . . . 5  |-  ( aleph `  z )  e.  _V
1918epelc 4735 . . . 4  |-  ( (
aleph `  y )  _E  ( aleph `  z )  <->  (
aleph `  y )  e.  ( aleph `  z )
)
2016, 17, 193bitr4g 288 . . 3  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  _E  z  <->  (
aleph `  y )  _E  ( aleph `  z )
) )
2120rgen2a 2830 . 2  |-  A. y  e.  On  A. z  e.  On  ( y  _E  z  <->  ( aleph `  y
)  _E  ( aleph `  z ) )
22 df-isom 5534 . 2  |-  ( aleph  Isom 
_E  ,  _E  ( On ,  { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )  <->  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  A. y  e.  On  A. z  e.  On  (
y  _E  z  <->  ( aleph `  y )  _E  ( aleph `  z ) ) ) )
2315, 21, 22mpbir2an 921 1  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   {cab 2387   A.wral 2753    C_ wss 3413   class class class wbr 4394    _E cep 4731   Oncon0 4821   ran crn 4943    Fn wfn 5520   -->wf 5521   -1-1->wf1 5522   -onto->wfo 5523   -1-1-onto->wf1o 5524   ` cfv 5525    Isom wiso 5526   omcom 6638   cardccrd 8268   alephcale 8269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-inf2 8011
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6196  df-om 6639  df-recs 6999  df-rdg 7033  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-oi 7889  df-har 7938  df-card 8272  df-aleph 8273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator