MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephiso Structured version   Unicode version

Theorem alephiso 8470
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
alephiso  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )

Proof of Theorem alephiso
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8437 . . . . . 6  |-  aleph  Fn  On
2 isinfcard 8464 . . . . . . . 8  |-  ( ( om  C_  x  /\  ( card `  x )  =  x )  <->  x  e.  ran  aleph )
32bicomi 202 . . . . . . 7  |-  ( x  e.  ran  aleph  <->  ( om  C_  x  /\  ( card `  x )  =  x ) )
43abbi2i 2595 . . . . . 6  |-  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
5 df-fo 5587 . . . . . 6  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph  Fn  On  /\  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
61, 4, 5mpbir2an 913 . . . . 5  |-  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
7 fof 5788 . . . . 5  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  ->  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )
86, 7ax-mp 5 . . . 4  |-  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
9 aleph11 8456 . . . . . 6  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  <->  y  =  z ) )
109biimpd 207 . . . . 5  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  ->  y  =  z ) )
1110rgen2a 2886 . . . 4  |-  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z )
12 dff13 6147 . . . 4  |-  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) }  /\  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z ) ) )
138, 11, 12mpbir2an 913 . . 3  |-  aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
14 df-f1o 5588 . . 3  |-  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
1513, 6, 14mpbir2an 913 . 2  |-  aleph : On -1-1-onto-> {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
16 alephord2 8448 . . . 4  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  e.  z  <-> 
( aleph `  y )  e.  ( aleph `  z )
) )
17 epel 4789 . . . 4  |-  ( y  _E  z  <->  y  e.  z )
18 fvex 5869 . . . . 5  |-  ( aleph `  z )  e.  _V
1918epelc 4788 . . . 4  |-  ( (
aleph `  y )  _E  ( aleph `  z )  <->  (
aleph `  y )  e.  ( aleph `  z )
)
2016, 17, 193bitr4g 288 . . 3  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  _E  z  <->  (
aleph `  y )  _E  ( aleph `  z )
) )
2120rgen2a 2886 . 2  |-  A. y  e.  On  A. z  e.  On  ( y  _E  z  <->  ( aleph `  y
)  _E  ( aleph `  z ) )
22 df-isom 5590 . 2  |-  ( aleph  Isom 
_E  ,  _E  ( On ,  { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )  <->  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  A. y  e.  On  A. z  e.  On  (
y  _E  z  <->  ( aleph `  y )  _E  ( aleph `  z ) ) ) )
2315, 21, 22mpbir2an 913 1  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   {cab 2447   A.wral 2809    C_ wss 3471   class class class wbr 4442    _E cep 4784   Oncon0 4873   ran crn 4995    Fn wfn 5576   -->wf 5577   -1-1->wf1 5578   -onto->wfo 5579   -1-1-onto->wf1o 5580   ` cfv 5581    Isom wiso 5582   omcom 6673   cardccrd 8307   alephcale 8308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-oi 7926  df-har 7975  df-card 8311  df-aleph 8312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator