MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephinit Structured version   Visualization version   Unicode version

Theorem alephinit 8544
Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephinit  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem alephinit
StepHypRef Expression
1 isinfcard 8541 . . . . 5  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  A  e.  ran  aleph )
21bicomi 207 . . . 4  |-  ( A  e.  ran  aleph  <->  ( om  C_  A  /\  ( card `  A )  =  A ) )
32baib 919 . . 3  |-  ( om  C_  A  ->  ( A  e.  ran  aleph  <->  ( card `  A )  =  A ) )
43adantl 473 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  ( card `  A )  =  A ) )
5 onenon 8401 . . . . . . . 8  |-  ( A  e.  On  ->  A  e.  dom  card )
65adantr 472 . . . . . . 7  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  e.  dom  card )
7 onenon 8401 . . . . . . 7  |-  ( x  e.  On  ->  x  e.  dom  card )
8 carddom2 8429 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  x  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  x )  <->  A  ~<_  x ) )
96, 7, 8syl2an 485 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  C_  ( card `  x )  <->  A  ~<_  x ) )
10 cardonle 8409 . . . . . . . 8  |-  ( x  e.  On  ->  ( card `  x )  C_  x )
1110adantl 473 . . . . . . 7  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( card `  x
)  C_  x )
12 sstr 3426 . . . . . . . 8  |-  ( ( ( card `  A
)  C_  ( card `  x )  /\  ( card `  x )  C_  x )  ->  ( card `  A )  C_  x )
1312expcom 442 . . . . . . 7  |-  ( (
card `  x )  C_  x  ->  ( ( card `  A )  C_  ( card `  x )  ->  ( card `  A
)  C_  x )
)
1411, 13syl 17 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  C_  ( card `  x )  ->  ( card `  A )  C_  x ) )
159, 14sylbird 243 . . . . 5  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( A  ~<_  x  -> 
( card `  A )  C_  x ) )
16 sseq1 3439 . . . . . 6  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  x  <->  A  C_  x ) )
1716imbi2d 323 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( ( A  ~<_  x  ->  ( card `  A )  C_  x )  <->  ( A  ~<_  x  ->  A  C_  x
) ) )
1815, 17syl5ibcom 228 . . . 4  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  =  A  -> 
( A  ~<_  x  ->  A  C_  x ) ) )
1918ralrimdva 2812 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  (
( card `  A )  =  A  ->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
20 oncardid 8408 . . . . . . 7  |-  ( A  e.  On  ->  ( card `  A )  ~~  A )
21 ensym 7636 . . . . . . 7  |-  ( (
card `  A )  ~~  A  ->  A  ~~  ( card `  A )
)
22 endom 7614 . . . . . . 7  |-  ( A 
~~  ( card `  A
)  ->  A  ~<_  ( card `  A ) )
2320, 21, 223syl 18 . . . . . 6  |-  ( A  e.  On  ->  A  ~<_  ( card `  A )
)
2423adantr 472 . . . . 5  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  ~<_  ( card `  A )
)
25 cardon 8396 . . . . . 6  |-  ( card `  A )  e.  On
26 breq2 4399 . . . . . . . 8  |-  ( x  =  ( card `  A
)  ->  ( A  ~<_  x 
<->  A  ~<_  ( card `  A
) ) )
27 sseq2 3440 . . . . . . . 8  |-  ( x  =  ( card `  A
)  ->  ( A  C_  x  <->  A  C_  ( card `  A ) ) )
2826, 27imbi12d 327 . . . . . . 7  |-  ( x  =  ( card `  A
)  ->  ( ( A  ~<_  x  ->  A  C_  x )  <->  ( A  ~<_  ( card `  A )  ->  A  C_  ( card `  A ) ) ) )
2928rspcv 3132 . . . . . 6  |-  ( (
card `  A )  e.  On  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A  C_  x )  ->  ( A  ~<_  ( card `  A
)  ->  A  C_  ( card `  A ) ) ) )
3025, 29ax-mp 5 . . . . 5  |-  ( A. x  e.  On  ( A  ~<_  x  ->  A  C_  x )  ->  ( A  ~<_  ( card `  A
)  ->  A  C_  ( card `  A ) ) )
3124, 30syl5com 30 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x )  ->  A  C_  ( card `  A
) ) )
32 cardonle 8409 . . . . . . 7  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
3332adantr 472 . . . . . 6  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( card `  A )  C_  A )
3433biantrurd 516 . . . . 5  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  C_  ( card `  A
)  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) ) )
35 eqss 3433 . . . . 5  |-  ( (
card `  A )  =  A  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) )
3634, 35syl6bbr 271 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
3731, 36sylibd 222 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x )  -> 
( card `  A )  =  A ) )
3819, 37impbid 195 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  (
( card `  A )  =  A  <->  A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x ) ) )
394, 38bitrd 261 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756    C_ wss 3390   class class class wbr 4395   dom cdm 4839   ran crn 4840   Oncon0 5430   ` cfv 5589   omcom 6711    ~~ cen 7584    ~<_ cdom 7585   cardccrd 8387   alephcale 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-oi 8043  df-har 8091  df-card 8391  df-aleph 8392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator