MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephinit Structured version   Unicode version

Theorem alephinit 8270
Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephinit  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
Distinct variable group:    x, A

Proof of Theorem alephinit
StepHypRef Expression
1 isinfcard 8267 . . . . 5  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  A  e.  ran  aleph )
21bicomi 202 . . . 4  |-  ( A  e.  ran  aleph  <->  ( om  C_  A  /\  ( card `  A )  =  A ) )
32baib 896 . . 3  |-  ( om  C_  A  ->  ( A  e.  ran  aleph  <->  ( card `  A )  =  A ) )
43adantl 466 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  ( card `  A )  =  A ) )
5 onenon 8124 . . . . . . . 8  |-  ( A  e.  On  ->  A  e.  dom  card )
65adantr 465 . . . . . . 7  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  e.  dom  card )
7 onenon 8124 . . . . . . 7  |-  ( x  e.  On  ->  x  e.  dom  card )
8 carddom2 8152 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  x  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  x )  <->  A  ~<_  x ) )
96, 7, 8syl2an 477 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  C_  ( card `  x )  <->  A  ~<_  x ) )
10 cardonle 8132 . . . . . . . 8  |-  ( x  e.  On  ->  ( card `  x )  C_  x )
1110adantl 466 . . . . . . 7  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( card `  x
)  C_  x )
12 sstr 3369 . . . . . . . 8  |-  ( ( ( card `  A
)  C_  ( card `  x )  /\  ( card `  x )  C_  x )  ->  ( card `  A )  C_  x )
1312expcom 435 . . . . . . 7  |-  ( (
card `  x )  C_  x  ->  ( ( card `  A )  C_  ( card `  x )  ->  ( card `  A
)  C_  x )
)
1411, 13syl 16 . . . . . 6  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  C_  ( card `  x )  ->  ( card `  A )  C_  x ) )
159, 14sylbird 235 . . . . 5  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( A  ~<_  x  -> 
( card `  A )  C_  x ) )
16 sseq1 3382 . . . . . 6  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  x  <->  A  C_  x ) )
1716imbi2d 316 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( ( A  ~<_  x  ->  ( card `  A )  C_  x )  <->  ( A  ~<_  x  ->  A  C_  x
) ) )
1815, 17syl5ibcom 220 . . . 4  |-  ( ( ( A  e.  On  /\ 
om  C_  A )  /\  x  e.  On )  ->  ( ( card `  A
)  =  A  -> 
( A  ~<_  x  ->  A  C_  x ) ) )
1918ralrimdva 2811 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  (
( card `  A )  =  A  ->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
20 oncardid 8131 . . . . . . 7  |-  ( A  e.  On  ->  ( card `  A )  ~~  A )
21 ensym 7363 . . . . . . 7  |-  ( (
card `  A )  ~~  A  ->  A  ~~  ( card `  A )
)
22 endom 7341 . . . . . . 7  |-  ( A 
~~  ( card `  A
)  ->  A  ~<_  ( card `  A ) )
2320, 21, 223syl 20 . . . . . 6  |-  ( A  e.  On  ->  A  ~<_  ( card `  A )
)
2423adantr 465 . . . . 5  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  ~<_  ( card `  A )
)
25 cardon 8119 . . . . . 6  |-  ( card `  A )  e.  On
26 breq2 4301 . . . . . . . 8  |-  ( x  =  ( card `  A
)  ->  ( A  ~<_  x 
<->  A  ~<_  ( card `  A
) ) )
27 sseq2 3383 . . . . . . . 8  |-  ( x  =  ( card `  A
)  ->  ( A  C_  x  <->  A  C_  ( card `  A ) ) )
2826, 27imbi12d 320 . . . . . . 7  |-  ( x  =  ( card `  A
)  ->  ( ( A  ~<_  x  ->  A  C_  x )  <->  ( A  ~<_  ( card `  A )  ->  A  C_  ( card `  A ) ) ) )
2928rspcv 3074 . . . . . 6  |-  ( (
card `  A )  e.  On  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A  C_  x )  ->  ( A  ~<_  ( card `  A
)  ->  A  C_  ( card `  A ) ) ) )
3025, 29ax-mp 5 . . . . 5  |-  ( A. x  e.  On  ( A  ~<_  x  ->  A  C_  x )  ->  ( A  ~<_  ( card `  A
)  ->  A  C_  ( card `  A ) ) )
3124, 30syl5com 30 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x )  ->  A  C_  ( card `  A
) ) )
32 cardonle 8132 . . . . . . 7  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
3332adantr 465 . . . . . 6  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( card `  A )  C_  A )
3433biantrurd 508 . . . . 5  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  C_  ( card `  A
)  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) ) )
35 eqss 3376 . . . . 5  |-  ( (
card `  A )  =  A  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) )
3634, 35syl6bbr 263 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
3731, 36sylibd 214 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x )  -> 
( card `  A )  =  A ) )
3819, 37impbid 191 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  (
( card `  A )  =  A  <->  A. x  e.  On  ( A  ~<_  x  ->  A 
C_  x ) ) )
394, 38bitrd 253 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  e.  ran  aleph  <->  A. x  e.  On  ( A  ~<_  x  ->  A  C_  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720    C_ wss 3333   class class class wbr 4297   Oncon0 4724   dom cdm 4845   ran crn 4846   ` cfv 5423   omcom 6481    ~~ cen 7312    ~<_ cdom 7313   cardccrd 8110   alephcale 8111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-oi 7729  df-har 7778  df-card 8114  df-aleph 8115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator