MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp2 Unicode version

Theorem alephfp2 7620
Description: The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 7619 for an actual example of a fixed point. Compare the inequality alephle 7599 that holds in general. Note that if  x is a fixed point, then  aleph `  aleph `  aleph ` ...  aleph `  x  =  x. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephfp2  |-  E. x  e.  On  ( aleph `  x
)  =  x

Proof of Theorem alephfp2
StepHypRef Expression
1 alephsson 7611 . . 3  |-  ran  aleph  C_  On
2 eqid 2253 . . . 4  |-  ( rec ( aleph ,  om )  |` 
om )  =  ( rec ( aleph ,  om )  |`  om )
32alephfplem4 7618 . . 3  |-  U. (
( rec ( aleph ,  om )  |`  om ) " om )  e.  ran  aleph
41, 3sselii 3100 . 2  |-  U. (
( rec ( aleph ,  om )  |`  om ) " om )  e.  On
52alephfp 7619 . 2  |-  ( aleph ` 
U. ( ( rec ( aleph ,  om )  |` 
om ) " om ) )  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )
6 fveq2 5377 . . . 4  |-  ( x  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )  ->  ( aleph `  x )  =  (
aleph `  U. ( ( rec ( aleph ,  om )  |`  om ) " om ) ) )
7 id 21 . . . 4  |-  ( x  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )  ->  x  = 
U. ( ( rec ( aleph ,  om )  |` 
om ) " om ) )
86, 7eqeq12d 2267 . . 3  |-  ( x  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )  ->  ( (
aleph `  x )  =  x  <->  ( aleph `  U. ( ( rec ( aleph ,  om )  |`  om ) " om )
)  =  U. (
( rec ( aleph ,  om )  |`  om ) " om ) ) )
98rcla4ev 2821 . 2  |-  ( ( U. ( ( rec ( aleph ,  om )  |` 
om ) " om )  e.  On  /\  ( aleph `  U. ( ( rec ( aleph ,  om )  |`  om ) " om ) )  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )
)  ->  E. x  e.  On  ( aleph `  x
)  =  x )
104, 5, 9mp2an 656 1  |-  E. x  e.  On  ( aleph `  x
)  =  x
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   E.wrex 2510   U.cuni 3727   Oncon0 4285   omcom 4547   ran crn 4581    |` cres 4582   "cima 4583   ` cfv 4592   reccrdg 6308   alephcale 7453
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-oi 7109  df-har 7156  df-card 7456  df-aleph 7457
  Copyright terms: Public domain W3C validator