MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp2 Structured version   Unicode version

Theorem alephfp2 8500
Description: The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 8499 for an actual example of a fixed point. Compare the inequality alephle 8479 that holds in general. Note that if  x is a fixed point, then  aleph `  aleph `  aleph ` ...  aleph `  x  =  x. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephfp2  |-  E. x  e.  On  ( aleph `  x
)  =  x

Proof of Theorem alephfp2
StepHypRef Expression
1 alephsson 8491 . . 3  |-  ran  aleph  C_  On
2 eqid 2467 . . . 4  |-  ( rec ( aleph ,  om )  |` 
om )  =  ( rec ( aleph ,  om )  |`  om )
32alephfplem4 8498 . . 3  |-  U. (
( rec ( aleph ,  om )  |`  om ) " om )  e.  ran  aleph
41, 3sselii 3506 . 2  |-  U. (
( rec ( aleph ,  om )  |`  om ) " om )  e.  On
52alephfp 8499 . 2  |-  ( aleph ` 
U. ( ( rec ( aleph ,  om )  |` 
om ) " om ) )  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )
6 fveq2 5871 . . . 4  |-  ( x  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )  ->  ( aleph `  x )  =  (
aleph `  U. ( ( rec ( aleph ,  om )  |`  om ) " om ) ) )
7 id 22 . . . 4  |-  ( x  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )  ->  x  = 
U. ( ( rec ( aleph ,  om )  |` 
om ) " om ) )
86, 7eqeq12d 2489 . . 3  |-  ( x  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )  ->  ( (
aleph `  x )  =  x  <->  ( aleph `  U. ( ( rec ( aleph ,  om )  |`  om ) " om )
)  =  U. (
( rec ( aleph ,  om )  |`  om ) " om ) ) )
98rspcev 3219 . 2  |-  ( ( U. ( ( rec ( aleph ,  om )  |` 
om ) " om )  e.  On  /\  ( aleph `  U. ( ( rec ( aleph ,  om )  |`  om ) " om ) )  =  U. ( ( rec ( aleph ,  om )  |`  om ) " om )
)  ->  E. x  e.  On  ( aleph `  x
)  =  x )
104, 5, 9mp2an 672 1  |-  E. x  e.  On  ( aleph `  x
)  =  x
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   E.wrex 2818   U.cuni 4250   Oncon0 4883   ran crn 5005    |` cres 5006   "cima 5007   ` cfv 5593   omcom 6694   reccrdg 7085   alephcale 8327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-inf2 8068
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6255  df-om 6695  df-recs 7052  df-rdg 7086  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-fin 7530  df-oi 7945  df-har 7994  df-card 8330  df-aleph 8331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator