MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp Unicode version

Theorem alephfp 7945
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 7946 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
alephfplem.1  |-  H  =  ( rec ( aleph ,  om )  |`  om )
Assertion
Ref Expression
alephfp  |-  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )

Proof of Theorem alephfp
Dummy variables  z 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfplem.1 . . 3  |-  H  =  ( rec ( aleph ,  om )  |`  om )
21alephfplem4 7944 . 2  |-  U. ( H " om )  e. 
ran  aleph
3 isinfcard 7929 . . 3  |-  ( ( om  C_  U. ( H " om )  /\  ( card `  U. ( H
" om ) )  =  U. ( H
" om ) )  <->  U. ( H " om )  e.  ran  aleph )
4 cardalephex 7927 . . . 4  |-  ( om  C_  U. ( H " om )  ->  ( (
card `  U. ( H
" om ) )  =  U. ( H
" om )  <->  E. z  e.  On  U. ( H
" om )  =  ( aleph `  z )
) )
54biimpa 471 . . 3  |-  ( ( om  C_  U. ( H " om )  /\  ( card `  U. ( H
" om ) )  =  U. ( H
" om ) )  ->  E. z  e.  On  U. ( H " om )  =  ( aleph `  z ) )
63, 5sylbir 205 . 2  |-  ( U. ( H " om )  e.  ran  aleph  ->  E. z  e.  On  U. ( H
" om )  =  ( aleph `  z )
)
7 alephle 7925 . . . . . . . . 9  |-  ( z  e.  On  ->  z  C_  ( aleph `  z )
)
8 alephon 7906 . . . . . . . . . . 11  |-  ( aleph `  z )  e.  On
98onirri 4647 . . . . . . . . . 10  |-  -.  ( aleph `  z )  e.  ( aleph `  z )
10 frfnom 6651 . . . . . . . . . . . . . 14  |-  ( rec ( aleph ,  om )  |` 
om )  Fn  om
111fneq1i 5498 . . . . . . . . . . . . . 14  |-  ( H  Fn  om  <->  ( rec ( aleph ,  om )  |` 
om )  Fn  om )
1210, 11mpbir 201 . . . . . . . . . . . . 13  |-  H  Fn  om
13 fnfun 5501 . . . . . . . . . . . . 13  |-  ( H  Fn  om  ->  Fun  H )
14 eluniima 5956 . . . . . . . . . . . . 13  |-  ( Fun 
H  ->  ( z  e.  U. ( H " om )  <->  E. v  e.  om  z  e.  ( H `  v ) ) )
1512, 13, 14mp2b 10 . . . . . . . . . . . 12  |-  ( z  e.  U. ( H
" om )  <->  E. v  e.  om  z  e.  ( H `  v ) )
16 alephsson 7937 . . . . . . . . . . . . . . . 16  |-  ran  aleph  C_  On
171alephfplem3 7943 . . . . . . . . . . . . . . . 16  |-  ( v  e.  om  ->  ( H `  v )  e.  ran  aleph )
1816, 17sseldi 3306 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  ( H `  v )  e.  On )
19 alephord2i 7914 . . . . . . . . . . . . . . 15  |-  ( ( H `  v )  e.  On  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  ( aleph `  ( H `  v ) ) ) )
2018, 19syl 16 . . . . . . . . . . . . . 14  |-  ( v  e.  om  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  ( aleph `  ( H `  v ) ) ) )
211alephfplem2 7942 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( H `  suc  v )  =  ( aleph `  ( H `  v )
) )
22 peano2 4824 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  om  ->  suc  v  e.  om )
23 fnfvelrn 5826 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( H  Fn  om  /\  suc  v  e.  om )  ->  ( H `  suc  v )  e.  ran  H )
2412, 23mpan 652 . . . . . . . . . . . . . . . . . . 19  |-  ( suc  v  e.  om  ->  ( H `  suc  v
)  e.  ran  H
)
25 fnima 5522 . . . . . . . . . . . . . . . . . . . 20  |-  ( H  Fn  om  ->  ( H " om )  =  ran  H )
2612, 25ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( H
" om )  =  ran  H
2724, 26syl6eleqr 2495 . . . . . . . . . . . . . . . . . 18  |-  ( suc  v  e.  om  ->  ( H `  suc  v
)  e.  ( H
" om ) )
2822, 27syl 16 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( H `  suc  v )  e.  ( H " om ) )
2921, 28eqeltrrd 2479 . . . . . . . . . . . . . . . 16  |-  ( v  e.  om  ->  ( aleph `  ( H `  v ) )  e.  ( H " om ) )
30 elssuni 4003 . . . . . . . . . . . . . . . 16  |-  ( (
aleph `  ( H `  v ) )  e.  ( H " om )  ->  ( aleph `  ( H `  v )
)  C_  U. ( H " om ) )
3129, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  ( aleph `  ( H `  v ) )  C_  U. ( H " om ) )
3231sseld 3307 . . . . . . . . . . . . . 14  |-  ( v  e.  om  ->  (
( aleph `  z )  e.  ( aleph `  ( H `  v ) )  -> 
( aleph `  z )  e.  U. ( H " om ) ) )
3320, 32syld 42 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  U. ( H " om ) ) )
3433rexlimiv 2784 . . . . . . . . . . . 12  |-  ( E. v  e.  om  z  e.  ( H `  v
)  ->  ( aleph `  z )  e.  U. ( H " om )
)
3515, 34sylbi 188 . . . . . . . . . . 11  |-  ( z  e.  U. ( H
" om )  -> 
( aleph `  z )  e.  U. ( H " om ) )
36 eleq2 2465 . . . . . . . . . . . 12  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  e.  U. ( H " om )  <->  z  e.  (
aleph `  z ) ) )
37 eleq2 2465 . . . . . . . . . . . 12  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( ( aleph `  z )  e. 
U. ( H " om )  <->  ( aleph `  z
)  e.  ( aleph `  z ) ) )
3836, 37imbi12d 312 . . . . . . . . . . 11  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( (
z  e.  U. ( H " om )  -> 
( aleph `  z )  e.  U. ( H " om ) )  <->  ( z  e.  ( aleph `  z )  ->  ( aleph `  z )  e.  ( aleph `  z )
) ) )
3935, 38mpbii 203 . . . . . . . . . 10  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  e.  ( aleph `  z )  ->  ( aleph `  z )  e.  ( aleph `  z )
) )
409, 39mtoi 171 . . . . . . . . 9  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  -.  z  e.  ( aleph `  z )
)
417, 40anim12i 550 . . . . . . . 8  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  C_  ( aleph `  z )  /\  -.  z  e.  ( aleph `  z ) ) )
42 eloni 4551 . . . . . . . . . 10  |-  ( z  e.  On  ->  Ord  z )
438onordi 4645 . . . . . . . . . 10  |-  Ord  ( aleph `  z )
44 ordtri4 4578 . . . . . . . . . 10  |-  ( ( Ord  z  /\  Ord  ( aleph `  z )
)  ->  ( z  =  ( aleph `  z
)  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4542, 43, 44sylancl 644 . . . . . . . . 9  |-  ( z  e.  On  ->  (
z  =  ( aleph `  z )  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4645adantr 452 . . . . . . . 8  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  =  (
aleph `  z )  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4741, 46mpbird 224 . . . . . . 7  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
z  =  ( aleph `  z ) )
48 eqeq2 2413 . . . . . . . 8  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  =  U. ( H " om )  <->  z  =  (
aleph `  z ) ) )
4948adantl 453 . . . . . . 7  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  =  U. ( H " om )  <->  z  =  ( aleph `  z
) ) )
5047, 49mpbird 224 . . . . . 6  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
z  =  U. ( H " om ) )
5150eqcomd 2409 . . . . 5  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  ->  U. ( H " om )  =  z )
5251fveq2d 5691 . . . 4  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( aleph `  U. ( H
" om ) )  =  ( aleph `  z
) )
53 eqeq2 2413 . . . . 5  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( ( aleph `  U. ( H
" om ) )  =  U. ( H
" om )  <->  ( aleph ` 
U. ( H " om ) )  =  (
aleph `  z ) ) )
5453adantl 453 . . . 4  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( ( aleph `  U. ( H " om )
)  =  U. ( H " om )  <->  ( aleph ` 
U. ( H " om ) )  =  (
aleph `  z ) ) )
5552, 54mpbird 224 . . 3  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( aleph `  U. ( H
" om ) )  =  U. ( H
" om ) )
5655rexlimiva 2785 . 2  |-  ( E. z  e.  On  U. ( H " om )  =  ( aleph `  z
)  ->  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )
)
572, 6, 56mp2b 10 1  |-  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667    C_ wss 3280   U.cuni 3975   Ord word 4540   Oncon0 4541   suc csuc 4543   omcom 4804   ran crn 4838    |` cres 4839   "cima 4840   Fun wfun 5407    Fn wfn 5408   ` cfv 5413   reccrdg 6626   cardccrd 7778   alephcale 7779
This theorem is referenced by:  alephfp2  7946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-har 7482  df-card 7782  df-aleph 7783
  Copyright terms: Public domain W3C validator