MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp Structured version   Unicode version

Theorem alephfp 8521
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 8522 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
alephfplem.1  |-  H  =  ( rec ( aleph ,  om )  |`  om )
Assertion
Ref Expression
alephfp  |-  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )

Proof of Theorem alephfp
Dummy variables  z 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfplem.1 . . 3  |-  H  =  ( rec ( aleph ,  om )  |`  om )
21alephfplem4 8520 . 2  |-  U. ( H " om )  e. 
ran  aleph
3 isinfcard 8505 . . 3  |-  ( ( om  C_  U. ( H " om )  /\  ( card `  U. ( H
" om ) )  =  U. ( H
" om ) )  <->  U. ( H " om )  e.  ran  aleph )
4 cardalephex 8503 . . . 4  |-  ( om  C_  U. ( H " om )  ->  ( (
card `  U. ( H
" om ) )  =  U. ( H
" om )  <->  E. z  e.  On  U. ( H
" om )  =  ( aleph `  z )
) )
54biimpa 482 . . 3  |-  ( ( om  C_  U. ( H " om )  /\  ( card `  U. ( H
" om ) )  =  U. ( H
" om ) )  ->  E. z  e.  On  U. ( H " om )  =  ( aleph `  z ) )
63, 5sylbir 213 . 2  |-  ( U. ( H " om )  e.  ran  aleph  ->  E. z  e.  On  U. ( H
" om )  =  ( aleph `  z )
)
7 alephle 8501 . . . . . . . . 9  |-  ( z  e.  On  ->  z  C_  ( aleph `  z )
)
8 alephon 8482 . . . . . . . . . . 11  |-  ( aleph `  z )  e.  On
98onirri 5516 . . . . . . . . . 10  |-  -.  ( aleph `  z )  e.  ( aleph `  z )
10 frfnom 7137 . . . . . . . . . . . . . 14  |-  ( rec ( aleph ,  om )  |` 
om )  Fn  om
111fneq1i 5656 . . . . . . . . . . . . . 14  |-  ( H  Fn  om  <->  ( rec ( aleph ,  om )  |` 
om )  Fn  om )
1210, 11mpbir 209 . . . . . . . . . . . . 13  |-  H  Fn  om
13 fnfun 5659 . . . . . . . . . . . . 13  |-  ( H  Fn  om  ->  Fun  H )
14 eluniima 6143 . . . . . . . . . . . . 13  |-  ( Fun 
H  ->  ( z  e.  U. ( H " om )  <->  E. v  e.  om  z  e.  ( H `  v ) ) )
1512, 13, 14mp2b 10 . . . . . . . . . . . 12  |-  ( z  e.  U. ( H
" om )  <->  E. v  e.  om  z  e.  ( H `  v ) )
16 alephsson 8513 . . . . . . . . . . . . . . . 16  |-  ran  aleph  C_  On
171alephfplem3 8519 . . . . . . . . . . . . . . . 16  |-  ( v  e.  om  ->  ( H `  v )  e.  ran  aleph )
1816, 17sseldi 3440 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  ( H `  v )  e.  On )
19 alephord2i 8490 . . . . . . . . . . . . . . 15  |-  ( ( H `  v )  e.  On  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  ( aleph `  ( H `  v ) ) ) )
2018, 19syl 17 . . . . . . . . . . . . . 14  |-  ( v  e.  om  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  ( aleph `  ( H `  v ) ) ) )
211alephfplem2 8518 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( H `  suc  v )  =  ( aleph `  ( H `  v )
) )
22 peano2 6704 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  om  ->  suc  v  e.  om )
23 fnfvelrn 6006 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( H  Fn  om  /\  suc  v  e.  om )  ->  ( H `  suc  v )  e.  ran  H )
2412, 23mpan 668 . . . . . . . . . . . . . . . . . . 19  |-  ( suc  v  e.  om  ->  ( H `  suc  v
)  e.  ran  H
)
25 fnima 5680 . . . . . . . . . . . . . . . . . . . 20  |-  ( H  Fn  om  ->  ( H " om )  =  ran  H )
2612, 25ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( H
" om )  =  ran  H
2724, 26syl6eleqr 2501 . . . . . . . . . . . . . . . . . 18  |-  ( suc  v  e.  om  ->  ( H `  suc  v
)  e.  ( H
" om ) )
2822, 27syl 17 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( H `  suc  v )  e.  ( H " om ) )
2921, 28eqeltrrd 2491 . . . . . . . . . . . . . . . 16  |-  ( v  e.  om  ->  ( aleph `  ( H `  v ) )  e.  ( H " om ) )
30 elssuni 4220 . . . . . . . . . . . . . . . 16  |-  ( (
aleph `  ( H `  v ) )  e.  ( H " om )  ->  ( aleph `  ( H `  v )
)  C_  U. ( H " om ) )
3129, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  ( aleph `  ( H `  v ) )  C_  U. ( H " om ) )
3231sseld 3441 . . . . . . . . . . . . . 14  |-  ( v  e.  om  ->  (
( aleph `  z )  e.  ( aleph `  ( H `  v ) )  -> 
( aleph `  z )  e.  U. ( H " om ) ) )
3320, 32syld 42 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  U. ( H " om ) ) )
3433rexlimiv 2890 . . . . . . . . . . . 12  |-  ( E. v  e.  om  z  e.  ( H `  v
)  ->  ( aleph `  z )  e.  U. ( H " om )
)
3515, 34sylbi 195 . . . . . . . . . . 11  |-  ( z  e.  U. ( H
" om )  -> 
( aleph `  z )  e.  U. ( H " om ) )
36 eleq2 2475 . . . . . . . . . . . 12  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  e.  U. ( H " om )  <->  z  e.  (
aleph `  z ) ) )
37 eleq2 2475 . . . . . . . . . . . 12  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( ( aleph `  z )  e. 
U. ( H " om )  <->  ( aleph `  z
)  e.  ( aleph `  z ) ) )
3836, 37imbi12d 318 . . . . . . . . . . 11  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( (
z  e.  U. ( H " om )  -> 
( aleph `  z )  e.  U. ( H " om ) )  <->  ( z  e.  ( aleph `  z )  ->  ( aleph `  z )  e.  ( aleph `  z )
) ) )
3935, 38mpbii 211 . . . . . . . . . 10  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  e.  ( aleph `  z )  ->  ( aleph `  z )  e.  ( aleph `  z )
) )
409, 39mtoi 178 . . . . . . . . 9  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  -.  z  e.  ( aleph `  z )
)
417, 40anim12i 564 . . . . . . . 8  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  C_  ( aleph `  z )  /\  -.  z  e.  ( aleph `  z ) ) )
42 eloni 5420 . . . . . . . . . 10  |-  ( z  e.  On  ->  Ord  z )
438onordi 5514 . . . . . . . . . 10  |-  Ord  ( aleph `  z )
44 ordtri4 5447 . . . . . . . . . 10  |-  ( ( Ord  z  /\  Ord  ( aleph `  z )
)  ->  ( z  =  ( aleph `  z
)  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4542, 43, 44sylancl 660 . . . . . . . . 9  |-  ( z  e.  On  ->  (
z  =  ( aleph `  z )  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4645adantr 463 . . . . . . . 8  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  =  (
aleph `  z )  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4741, 46mpbird 232 . . . . . . 7  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
z  =  ( aleph `  z ) )
48 eqeq2 2417 . . . . . . . 8  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  =  U. ( H " om )  <->  z  =  (
aleph `  z ) ) )
4948adantl 464 . . . . . . 7  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  =  U. ( H " om )  <->  z  =  ( aleph `  z
) ) )
5047, 49mpbird 232 . . . . . 6  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
z  =  U. ( H " om ) )
5150eqcomd 2410 . . . . 5  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  ->  U. ( H " om )  =  z )
5251fveq2d 5853 . . . 4  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( aleph `  U. ( H
" om ) )  =  ( aleph `  z
) )
53 eqeq2 2417 . . . . 5  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( ( aleph `  U. ( H
" om ) )  =  U. ( H
" om )  <->  ( aleph ` 
U. ( H " om ) )  =  (
aleph `  z ) ) )
5453adantl 464 . . . 4  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( ( aleph `  U. ( H " om )
)  =  U. ( H " om )  <->  ( aleph ` 
U. ( H " om ) )  =  (
aleph `  z ) ) )
5552, 54mpbird 232 . . 3  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( aleph `  U. ( H
" om ) )  =  U. ( H
" om ) )
5655rexlimiva 2892 . 2  |-  ( E. z  e.  On  U. ( H " om )  =  ( aleph `  z
)  ->  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )
)
572, 6, 56mp2b 10 1  |-  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   E.wrex 2755    C_ wss 3414   U.cuni 4191   ran crn 4824    |` cres 4825   "cima 4826   Ord word 5409   Oncon0 5410   suc csuc 5412   Fun wfun 5563    Fn wfn 5564   ` cfv 5569   omcom 6683   reccrdg 7112   cardccrd 8348   alephcale 8349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-oi 7969  df-har 8018  df-card 8352  df-aleph 8353
This theorem is referenced by:  alephfp2  8522
  Copyright terms: Public domain W3C validator