MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfp Structured version   Unicode version

Theorem alephfp 8266
Description: The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 8267 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
alephfplem.1  |-  H  =  ( rec ( aleph ,  om )  |`  om )
Assertion
Ref Expression
alephfp  |-  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )

Proof of Theorem alephfp
Dummy variables  z 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfplem.1 . . 3  |-  H  =  ( rec ( aleph ,  om )  |`  om )
21alephfplem4 8265 . 2  |-  U. ( H " om )  e. 
ran  aleph
3 isinfcard 8250 . . 3  |-  ( ( om  C_  U. ( H " om )  /\  ( card `  U. ( H
" om ) )  =  U. ( H
" om ) )  <->  U. ( H " om )  e.  ran  aleph )
4 cardalephex 8248 . . . 4  |-  ( om  C_  U. ( H " om )  ->  ( (
card `  U. ( H
" om ) )  =  U. ( H
" om )  <->  E. z  e.  On  U. ( H
" om )  =  ( aleph `  z )
) )
54biimpa 481 . . 3  |-  ( ( om  C_  U. ( H " om )  /\  ( card `  U. ( H
" om ) )  =  U. ( H
" om ) )  ->  E. z  e.  On  U. ( H " om )  =  ( aleph `  z ) )
63, 5sylbir 213 . 2  |-  ( U. ( H " om )  e.  ran  aleph  ->  E. z  e.  On  U. ( H
" om )  =  ( aleph `  z )
)
7 alephle 8246 . . . . . . . . 9  |-  ( z  e.  On  ->  z  C_  ( aleph `  z )
)
8 alephon 8227 . . . . . . . . . . 11  |-  ( aleph `  z )  e.  On
98onirri 4812 . . . . . . . . . 10  |-  -.  ( aleph `  z )  e.  ( aleph `  z )
10 frfnom 6876 . . . . . . . . . . . . . 14  |-  ( rec ( aleph ,  om )  |` 
om )  Fn  om
111fneq1i 5493 . . . . . . . . . . . . . 14  |-  ( H  Fn  om  <->  ( rec ( aleph ,  om )  |` 
om )  Fn  om )
1210, 11mpbir 209 . . . . . . . . . . . . 13  |-  H  Fn  om
13 fnfun 5496 . . . . . . . . . . . . 13  |-  ( H  Fn  om  ->  Fun  H )
14 eluniima 5954 . . . . . . . . . . . . 13  |-  ( Fun 
H  ->  ( z  e.  U. ( H " om )  <->  E. v  e.  om  z  e.  ( H `  v ) ) )
1512, 13, 14mp2b 10 . . . . . . . . . . . 12  |-  ( z  e.  U. ( H
" om )  <->  E. v  e.  om  z  e.  ( H `  v ) )
16 alephsson 8258 . . . . . . . . . . . . . . . 16  |-  ran  aleph  C_  On
171alephfplem3 8264 . . . . . . . . . . . . . . . 16  |-  ( v  e.  om  ->  ( H `  v )  e.  ran  aleph )
1816, 17sseldi 3342 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  ( H `  v )  e.  On )
19 alephord2i 8235 . . . . . . . . . . . . . . 15  |-  ( ( H `  v )  e.  On  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  ( aleph `  ( H `  v ) ) ) )
2018, 19syl 16 . . . . . . . . . . . . . 14  |-  ( v  e.  om  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  ( aleph `  ( H `  v ) ) ) )
211alephfplem2 8263 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( H `  suc  v )  =  ( aleph `  ( H `  v )
) )
22 peano2 6485 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  om  ->  suc  v  e.  om )
23 fnfvelrn 5828 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( H  Fn  om  /\  suc  v  e.  om )  ->  ( H `  suc  v )  e.  ran  H )
2412, 23mpan 663 . . . . . . . . . . . . . . . . . . 19  |-  ( suc  v  e.  om  ->  ( H `  suc  v
)  e.  ran  H
)
25 fnima 5517 . . . . . . . . . . . . . . . . . . . 20  |-  ( H  Fn  om  ->  ( H " om )  =  ran  H )
2612, 25ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( H
" om )  =  ran  H
2724, 26syl6eleqr 2524 . . . . . . . . . . . . . . . . . 18  |-  ( suc  v  e.  om  ->  ( H `  suc  v
)  e.  ( H
" om ) )
2822, 27syl 16 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  om  ->  ( H `  suc  v )  e.  ( H " om ) )
2921, 28eqeltrrd 2508 . . . . . . . . . . . . . . . 16  |-  ( v  e.  om  ->  ( aleph `  ( H `  v ) )  e.  ( H " om ) )
30 elssuni 4109 . . . . . . . . . . . . . . . 16  |-  ( (
aleph `  ( H `  v ) )  e.  ( H " om )  ->  ( aleph `  ( H `  v )
)  C_  U. ( H " om ) )
3129, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( v  e.  om  ->  ( aleph `  ( H `  v ) )  C_  U. ( H " om ) )
3231sseld 3343 . . . . . . . . . . . . . 14  |-  ( v  e.  om  ->  (
( aleph `  z )  e.  ( aleph `  ( H `  v ) )  -> 
( aleph `  z )  e.  U. ( H " om ) ) )
3320, 32syld 44 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  (
z  e.  ( H `
 v )  -> 
( aleph `  z )  e.  U. ( H " om ) ) )
3433rexlimiv 2825 . . . . . . . . . . . 12  |-  ( E. v  e.  om  z  e.  ( H `  v
)  ->  ( aleph `  z )  e.  U. ( H " om )
)
3515, 34sylbi 195 . . . . . . . . . . 11  |-  ( z  e.  U. ( H
" om )  -> 
( aleph `  z )  e.  U. ( H " om ) )
36 eleq2 2494 . . . . . . . . . . . 12  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  e.  U. ( H " om )  <->  z  e.  (
aleph `  z ) ) )
37 eleq2 2494 . . . . . . . . . . . 12  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( ( aleph `  z )  e. 
U. ( H " om )  <->  ( aleph `  z
)  e.  ( aleph `  z ) ) )
3836, 37imbi12d 320 . . . . . . . . . . 11  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( (
z  e.  U. ( H " om )  -> 
( aleph `  z )  e.  U. ( H " om ) )  <->  ( z  e.  ( aleph `  z )  ->  ( aleph `  z )  e.  ( aleph `  z )
) ) )
3935, 38mpbii 211 . . . . . . . . . 10  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  e.  ( aleph `  z )  ->  ( aleph `  z )  e.  ( aleph `  z )
) )
409, 39mtoi 178 . . . . . . . . 9  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  -.  z  e.  ( aleph `  z )
)
417, 40anim12i 561 . . . . . . . 8  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  C_  ( aleph `  z )  /\  -.  z  e.  ( aleph `  z ) ) )
42 eloni 4716 . . . . . . . . . 10  |-  ( z  e.  On  ->  Ord  z )
438onordi 4810 . . . . . . . . . 10  |-  Ord  ( aleph `  z )
44 ordtri4 4743 . . . . . . . . . 10  |-  ( ( Ord  z  /\  Ord  ( aleph `  z )
)  ->  ( z  =  ( aleph `  z
)  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4542, 43, 44sylancl 655 . . . . . . . . 9  |-  ( z  e.  On  ->  (
z  =  ( aleph `  z )  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4645adantr 462 . . . . . . . 8  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  =  (
aleph `  z )  <->  ( z  C_  ( aleph `  z )  /\  -.  z  e.  (
aleph `  z ) ) ) )
4741, 46mpbird 232 . . . . . . 7  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
z  =  ( aleph `  z ) )
48 eqeq2 2442 . . . . . . . 8  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( z  =  U. ( H " om )  <->  z  =  (
aleph `  z ) ) )
4948adantl 463 . . . . . . 7  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( z  =  U. ( H " om )  <->  z  =  ( aleph `  z
) ) )
5047, 49mpbird 232 . . . . . 6  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
z  =  U. ( H " om ) )
5150eqcomd 2438 . . . . 5  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  ->  U. ( H " om )  =  z )
5251fveq2d 5683 . . . 4  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( aleph `  U. ( H
" om ) )  =  ( aleph `  z
) )
53 eqeq2 2442 . . . . 5  |-  ( U. ( H " om )  =  ( aleph `  z
)  ->  ( ( aleph `  U. ( H
" om ) )  =  U. ( H
" om )  <->  ( aleph ` 
U. ( H " om ) )  =  (
aleph `  z ) ) )
5453adantl 463 . . . 4  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( ( aleph `  U. ( H " om )
)  =  U. ( H " om )  <->  ( aleph ` 
U. ( H " om ) )  =  (
aleph `  z ) ) )
5552, 54mpbird 232 . . 3  |-  ( ( z  e.  On  /\  U. ( H " om )  =  ( aleph `  z ) )  -> 
( aleph `  U. ( H
" om ) )  =  U. ( H
" om ) )
5655rexlimiva 2826 . 2  |-  ( E. z  e.  On  U. ( H " om )  =  ( aleph `  z
)  ->  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )
)
572, 6, 56mp2b 10 1  |-  ( aleph ` 
U. ( H " om ) )  =  U. ( H " om )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   E.wrex 2706    C_ wss 3316   U.cuni 4079   Ord word 4705   Oncon0 4706   suc csuc 4708   ran crn 4828    |` cres 4829   "cima 4830   Fun wfun 5400    Fn wfn 5401   ` cfv 5406   omcom 6465   reccrdg 6851   cardccrd 8093   alephcale 8094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-om 6466  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-oi 7712  df-har 7761  df-card 8097  df-aleph 8098
This theorem is referenced by:  alephfp2  8267
  Copyright terms: Public domain W3C validator