MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephexp2 Structured version   Unicode version

Theorem alephexp2 8945
Description: An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 8943 (which works if the base is less than or equal to the exponent) and infmap 8940 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
alephexp2  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~~  {
x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
Distinct variable group:    x, A

Proof of Theorem alephexp2
StepHypRef Expression
1 alephgeom 8452 . . . 4  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
2 fvex 5867 . . . . 5  |-  ( aleph `  A )  e.  _V
3 ssdomg 7551 . . . . 5  |-  ( (
aleph `  A )  e. 
_V  ->  ( om  C_  ( aleph `  A )  ->  om 
~<_  ( aleph `  A )
) )
42, 3ax-mp 5 . . . 4  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
51, 4sylbi 195 . . 3  |-  ( A  e.  On  ->  om  ~<_  ( aleph `  A ) )
6 domrefg 7540 . . . 4  |-  ( (
aleph `  A )  e. 
_V  ->  ( aleph `  A
)  ~<_  ( aleph `  A
) )
72, 6ax-mp 5 . . 3  |-  ( aleph `  A )  ~<_  ( aleph `  A )
8 infmap 8940 . . 3  |-  ( ( om  ~<_  ( aleph `  A
)  /\  ( aleph `  A )  ~<_  ( aleph `  A ) )  -> 
( ( aleph `  A
)  ^m  ( aleph `  A ) )  ~~  { x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
95, 7, 8sylancl 662 . 2  |-  ( A  e.  On  ->  (
( aleph `  A )  ^m  ( aleph `  A )
)  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } )
10 pm3.2 447 . . . . 5  |-  ( A  e.  On  ->  ( A  e.  On  ->  ( A  e.  On  /\  A  e.  On )
) )
1110pm2.43i 47 . . . 4  |-  ( A  e.  On  ->  ( A  e.  On  /\  A  e.  On ) )
12 ssid 3516 . . . 4  |-  A  C_  A
13 alephexp1 8943 . . . 4  |-  ( ( ( A  e.  On  /\  A  e.  On )  /\  A  C_  A
)  ->  ( ( aleph `  A )  ^m  ( aleph `  A )
)  ~~  ( 2o  ^m  ( aleph `  A )
) )
1411, 12, 13sylancl 662 . . 3  |-  ( A  e.  On  ->  (
( aleph `  A )  ^m  ( aleph `  A )
)  ~~  ( 2o  ^m  ( aleph `  A )
) )
15 enen1 7647 . . 3  |-  ( ( ( aleph `  A )  ^m  ( aleph `  A )
)  ~~  ( 2o  ^m  ( aleph `  A )
)  ->  ( (
( aleph `  A )  ^m  ( aleph `  A )
)  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) }  <-> 
( 2o  ^m  ( aleph `  A ) ) 
~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A
) ) } ) )
1614, 15syl 16 . 2  |-  ( A  e.  On  ->  (
( ( aleph `  A
)  ^m  ( aleph `  A ) )  ~~  { x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) }  <->  ( 2o  ^m  ( aleph `  A )
)  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A ) ) } ) )
179, 16mpbid 210 1  |-  ( A  e.  On  ->  ( 2o  ^m  ( aleph `  A
) )  ~~  {
x  |  ( x 
C_  ( aleph `  A
)  /\  x  ~~  ( aleph `  A )
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1762   {cab 2445   _Vcvv 3106    C_ wss 3469   class class class wbr 4440   Oncon0 4871   ` cfv 5579  (class class class)co 6275   omcom 6671   2oc2o 7114    ^m cmap 7410    ~~ cen 7503    ~<_ cdom 7504   alephcale 8306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-oi 7924  df-har 7973  df-card 8309  df-aleph 8310  df-acn 8312  df-ac 8486
This theorem is referenced by:  gch-kn  9044
  Copyright terms: Public domain W3C validator