MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephexp1 Structured version   Unicode version

Theorem alephexp1 8741
Description: An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephexp1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) )

Proof of Theorem alephexp1
StepHypRef Expression
1 alephon 8237 . . . 4  |-  ( aleph `  B )  e.  On
2 onenon 8117 . . . 4  |-  ( (
aleph `  B )  e.  On  ->  ( aleph `  B )  e.  dom  card )
31, 2mp1i 12 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( aleph `  B )  e.  dom  card )
4 fvex 5699 . . . 4  |-  ( aleph `  B )  e.  _V
5 simplr 754 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  B  e.  On )
6 alephgeom 8250 . . . . 5  |-  ( B  e.  On  <->  om  C_  ( aleph `  B ) )
75, 6sylib 196 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  om  C_  ( aleph `  B ) )
8 ssdomg 7353 . . . 4  |-  ( (
aleph `  B )  e. 
_V  ->  ( om  C_  ( aleph `  B )  ->  om 
~<_  ( aleph `  B )
) )
94, 7, 8mpsyl 63 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  om  ~<_  ( aleph `  B ) )
10 fvex 5699 . . . 4  |-  ( aleph `  A )  e.  _V
11 ordom 6483 . . . . . 6  |-  Ord  om
12 2onn 7077 . . . . . 6  |-  2o  e.  om
13 ordelss 4733 . . . . . 6  |-  ( ( Ord  om  /\  2o  e.  om )  ->  2o  C_ 
om )
1411, 12, 13mp2an 672 . . . . 5  |-  2o  C_  om
15 simpll 753 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  A  e.  On )
16 alephgeom 8250 . . . . . 6  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
1715, 16sylib 196 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  om  C_  ( aleph `  A ) )
1814, 17syl5ss 3365 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  2o  C_  ( aleph `  A ) )
19 ssdomg 7353 . . . 4  |-  ( (
aleph `  A )  e. 
_V  ->  ( 2o  C_  ( aleph `  A )  ->  2o  ~<_  ( aleph `  A
) ) )
2010, 18, 19mpsyl 63 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  2o  ~<_  ( aleph `  A ) )
21 alephord3 8246 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  (
aleph `  A )  C_  ( aleph `  B )
) )
22 ssdomg 7353 . . . . . . 7  |-  ( (
aleph `  B )  e. 
_V  ->  ( ( aleph `  A )  C_  ( aleph `  B )  -> 
( aleph `  A )  ~<_  ( aleph `  B )
) )
234, 22ax-mp 5 . . . . . 6  |-  ( (
aleph `  A )  C_  ( aleph `  B )  ->  ( aleph `  A )  ~<_  ( aleph `  B )
)
2421, 23syl6bi 228 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  ->  ( aleph `  A )  ~<_  ( aleph `  B )
) )
2524imp 429 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( aleph `  A )  ~<_  ( aleph `  B ) )
264canth2 7462 . . . . 5  |-  ( aleph `  B )  ~<  ~P ( aleph `  B )
27 sdomdom 7335 . . . . 5  |-  ( (
aleph `  B )  ~<  ~P ( aleph `  B )  ->  ( aleph `  B )  ~<_  ~P ( aleph `  B )
)
2826, 27ax-mp 5 . . . 4  |-  ( aleph `  B )  ~<_  ~P ( aleph `  B )
29 domtr 7360 . . . 4  |-  ( ( ( aleph `  A )  ~<_  ( aleph `  B )  /\  ( aleph `  B )  ~<_  ~P ( aleph `  B )
)  ->  ( aleph `  A )  ~<_  ~P ( aleph `  B ) )
3025, 28, 29sylancl 662 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( aleph `  A )  ~<_  ~P ( aleph `  B ) )
31 mappwen 8280 . . 3  |-  ( ( ( ( aleph `  B
)  e.  dom  card  /\ 
om  ~<_  ( aleph `  B
) )  /\  ( 2o 
~<_  ( aleph `  A )  /\  ( aleph `  A )  ~<_  ~P ( aleph `  B )
) )  ->  (
( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B ) )
323, 9, 20, 30, 31syl22anc 1219 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B ) )
334pw2en 7416 . . 3  |-  ~P ( aleph `  B )  ~~  ( 2o  ^m  ( aleph `  B ) )
34 enen2 7450 . . 3  |-  ( ~P ( aleph `  B )  ~~  ( 2o  ^m  ( aleph `  B ) )  ->  ( ( (
aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B )  <->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) ) )
3533, 34ax-mp 5 . 2  |-  ( ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ~P ( aleph `  B )  <->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) )
3632, 35sylib 196 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  ( ( aleph `  A )  ^m  ( aleph `  B )
)  ~~  ( 2o  ^m  ( aleph `  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   _Vcvv 2970    C_ wss 3326   ~Pcpw 3858   class class class wbr 4290   Ord word 4716   Oncon0 4717   dom cdm 4838   ` cfv 5416  (class class class)co 6089   omcom 6474   2oc2o 6912    ^m cmap 7212    ~~ cen 7305    ~<_ cdom 7306    ~< csdm 7307   cardccrd 8103   alephcale 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-2o 6919  df-oadd 6922  df-er 7099  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-oi 7722  df-har 7771  df-card 8107  df-aleph 8108
This theorem is referenced by:  alephexp2  8743
  Copyright terms: Public domain W3C validator