MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephcard Structured version   Unicode version

Theorem alephcard 8442
Description: Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephcard  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )

Proof of Theorem alephcard
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5848 . . . . 5  |-  ( x  =  (/)  ->  ( aleph `  x )  =  (
aleph `  (/) ) )
21fveq2d 5852 . . . 4  |-  ( x  =  (/)  ->  ( card `  ( aleph `  x )
)  =  ( card `  ( aleph `  (/) ) ) )
32, 1eqeq12d 2476 . . 3  |-  ( x  =  (/)  ->  ( (
card `  ( aleph `  x
) )  =  (
aleph `  x )  <->  ( card `  ( aleph `  (/) ) )  =  ( aleph `  (/) ) ) )
4 fveq2 5848 . . . . 5  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
54fveq2d 5852 . . . 4  |-  ( x  =  y  ->  ( card `  ( aleph `  x
) )  =  (
card `  ( aleph `  y
) ) )
65, 4eqeq12d 2476 . . 3  |-  ( x  =  y  ->  (
( card `  ( aleph `  x
) )  =  (
aleph `  x )  <->  ( card `  ( aleph `  y )
)  =  ( aleph `  y ) ) )
7 fveq2 5848 . . . . 5  |-  ( x  =  suc  y  -> 
( aleph `  x )  =  ( aleph `  suc  y ) )
87fveq2d 5852 . . . 4  |-  ( x  =  suc  y  -> 
( card `  ( aleph `  x
) )  =  (
card `  ( aleph `  suc  y ) ) )
98, 7eqeq12d 2476 . . 3  |-  ( x  =  suc  y  -> 
( ( card `  ( aleph `  x ) )  =  ( aleph `  x
)  <->  ( card `  ( aleph `  suc  y ) )  =  ( aleph ` 
suc  y ) ) )
10 fveq2 5848 . . . . 5  |-  ( x  =  A  ->  ( aleph `  x )  =  ( aleph `  A )
)
1110fveq2d 5852 . . . 4  |-  ( x  =  A  ->  ( card `  ( aleph `  x
) )  =  (
card `  ( aleph `  A
) ) )
1211, 10eqeq12d 2476 . . 3  |-  ( x  =  A  ->  (
( card `  ( aleph `  x
) )  =  (
aleph `  x )  <->  ( card `  ( aleph `  A )
)  =  ( aleph `  A ) ) )
13 cardom 8358 . . . 4  |-  ( card `  om )  =  om
14 aleph0 8438 . . . . 5  |-  ( aleph `  (/) )  =  om
1514fveq2i 5851 . . . 4  |-  ( card `  ( aleph `  (/) ) )  =  ( card `  om )
1613, 15, 143eqtr4i 2493 . . 3  |-  ( card `  ( aleph `  (/) ) )  =  ( aleph `  (/) )
17 harcard 8350 . . . . 5  |-  ( card `  (har `  ( aleph `  y
) ) )  =  (har `  ( aleph `  y
) )
18 alephsuc 8440 . . . . . 6  |-  ( y  e.  On  ->  ( aleph `  suc  y )  =  (har `  ( aleph `  y ) ) )
1918fveq2d 5852 . . . . 5  |-  ( y  e.  On  ->  ( card `  ( aleph `  suc  y ) )  =  ( card `  (har `  ( aleph `  y )
) ) )
2017, 19, 183eqtr4a 2521 . . . 4  |-  ( y  e.  On  ->  ( card `  ( aleph `  suc  y ) )  =  ( aleph `  suc  y ) )
2120a1d 25 . . 3  |-  ( y  e.  On  ->  (
( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  ( aleph `  suc  y ) )  =  ( aleph `  suc  y ) ) )
22 vex 3109 . . . . . . 7  |-  x  e. 
_V
23 cardiun 8354 . . . . . . 7  |-  ( x  e.  _V  ->  ( A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  U_ y  e.  x  ( aleph `  y
) )  =  U_ y  e.  x  ( aleph `  y ) ) )
2422, 23ax-mp 5 . . . . . 6  |-  ( A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  U_ y  e.  x  ( aleph `  y
) )  =  U_ y  e.  x  ( aleph `  y ) )
2524adantl 464 . . . . 5  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( card `  U_ y  e.  x  ( aleph `  y ) )  = 
U_ y  e.  x  ( aleph `  y )
)
26 alephlim 8439 . . . . . . . 8  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( aleph `  x )  = 
U_ y  e.  x  ( aleph `  y )
)
2722, 26mpan 668 . . . . . . 7  |-  ( Lim  x  ->  ( aleph `  x )  =  U_ y  e.  x  ( aleph `  y ) )
2827adantr 463 . . . . . 6  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( aleph `  x
)  =  U_ y  e.  x  ( aleph `  y ) )
2928fveq2d 5852 . . . . 5  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( card `  ( aleph `  x ) )  =  ( card `  U_ y  e.  x  ( aleph `  y ) ) )
3025, 29, 283eqtr4d 2505 . . . 4  |-  ( ( Lim  x  /\  A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y ) )  ->  ( card `  ( aleph `  x ) )  =  ( aleph `  x
) )
3130ex 432 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ( card `  ( aleph `  y
) )  =  (
aleph `  y )  -> 
( card `  ( aleph `  x
) )  =  (
aleph `  x ) ) )
323, 6, 9, 12, 16, 21, 31tfinds 6667 . 2  |-  ( A  e.  On  ->  ( card `  ( aleph `  A
) )  =  (
aleph `  A ) )
33 card0 8330 . . 3  |-  ( card `  (/) )  =  (/)
34 alephfnon 8437 . . . . . . 7  |-  aleph  Fn  On
35 fndm 5662 . . . . . . 7  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
3634, 35ax-mp 5 . . . . . 6  |-  dom  aleph  =  On
3736eleq2i 2532 . . . . 5  |-  ( A  e.  dom  aleph  <->  A  e.  On )
38 ndmfv 5872 . . . . 5  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
3937, 38sylnbir 305 . . . 4  |-  ( -.  A  e.  On  ->  (
aleph `  A )  =  (/) )
4039fveq2d 5852 . . 3  |-  ( -.  A  e.  On  ->  (
card `  ( aleph `  A
) )  =  (
card `  (/) ) )
4133, 40, 393eqtr4a 2521 . 2  |-  ( -.  A  e.  On  ->  (
card `  ( aleph `  A
) )  =  (
aleph `  A ) )
4232, 41pm2.61i 164 1  |-  ( card `  ( aleph `  A )
)  =  ( aleph `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106   (/)c0 3783   U_ciun 4315   Oncon0 4867   Lim wlim 4868   suc csuc 4869   dom cdm 4988    Fn wfn 5565   ` cfv 5570   omcom 6673  harchar 7974   cardccrd 8307   alephcale 8308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-oi 7927  df-har 7976  df-card 8311  df-aleph 8312
This theorem is referenced by:  alephnbtwn2  8444  alephord2  8448  alephsuc2  8452  alephislim  8455  alephsdom  8458  cardaleph  8461  cardalephex  8462  alephval3  8482  alephval2  8938  alephsuc3  8946  alephreg  8948  pwcfsdom  8949
  Copyright terms: Public domain W3C validator