MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephadd Unicode version

Theorem alephadd 8079
Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephadd  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
)

Proof of Theorem alephadd
StepHypRef Expression
1 ovex 5735 . . . 4  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  e.  _V
2 alephfnon 7576 . . . . . . . 8  |-  aleph  Fn  On
3 fndm 5200 . . . . . . . 8  |-  ( aleph  Fn  On  ->  dom  aleph  =  On )
42, 3ax-mp 10 . . . . . . 7  |-  dom  aleph  =  On
54eleq2i 2317 . . . . . 6  |-  ( A  e.  dom  aleph  <->  A  e.  On )
65notbii 289 . . . . 5  |-  ( -.  A  e.  dom  aleph  <->  -.  A  e.  On )
74eleq2i 2317 . . . . . 6  |-  ( B  e.  dom  aleph  <->  B  e.  On )
87notbii 289 . . . . 5  |-  ( -.  B  e.  dom  aleph  <->  -.  B  e.  On )
9 0ex 4047 . . . . . . . 8  |-  (/)  e.  _V
10 cdaval 7680 . . . . . . . 8  |-  ( (
(/)  e.  _V  /\  (/)  e.  _V )  ->  ( (/)  +c  (/) )  =  ( ( (/)  X.  { (/)
} )  u.  ( (/) 
X.  { 1o }
) ) )
119, 9, 10mp2an 656 . . . . . . 7  |-  ( (/)  +c  (/) )  =  (
( (/)  X.  { (/) } )  u.  ( (/)  X. 
{ 1o } ) )
12 xpundi 4648 . . . . . . 7  |-  ( (/)  X.  ( { (/) }  u.  { 1o } ) )  =  ( ( (/)  X. 
{ (/) } )  u.  ( (/)  X.  { 1o } ) )
13 xp0r 4675 . . . . . . 7  |-  ( (/)  X.  ( { (/) }  u.  { 1o } ) )  =  (/)
1411, 12, 133eqtr2i 2279 . . . . . 6  |-  ( (/)  +c  (/) )  =  (/)
15 ndmfv 5405 . . . . . . 7  |-  ( -.  A  e.  dom  aleph  ->  ( aleph `  A )  =  (/) )
16 ndmfv 5405 . . . . . . 7  |-  ( -.  B  e.  dom  aleph  ->  ( aleph `  B )  =  (/) )
1715, 16oveqan12d 5729 . . . . . 6  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  +c  ( aleph `  B )
)  =  ( (/)  +c  (/) ) )
1815adantr 453 . . . . . . . 8  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( aleph `  A )  =  (/) )
1916adantl 454 . . . . . . . 8  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( aleph `  B )  =  (/) )
2018, 19uneq12d 3240 . . . . . . 7  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  u.  ( aleph `  B )
)  =  ( (/)  u.  (/) ) )
21 un0 3386 . . . . . . 7  |-  ( (/)  u.  (/) )  =  (/)
2220, 21syl6eq 2301 . . . . . 6  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  u.  ( aleph `  B )
)  =  (/) )
2314, 17, 223eqtr4a 2311 . . . . 5  |-  ( ( -.  A  e.  dom  aleph  /\  -.  B  e.  dom  aleph
)  ->  ( ( aleph `  A )  +c  ( aleph `  B )
)  =  ( (
aleph `  A )  u.  ( aleph `  B )
) )
246, 8, 23syl2anbr 468 . . . 4  |-  ( ( -.  A  e.  On  /\ 
-.  B  e.  On )  ->  ( ( aleph `  A )  +c  ( aleph `  B ) )  =  ( ( aleph `  A )  u.  ( aleph `  B ) ) )
25 eqeng 6781 . . . 4  |-  ( ( ( aleph `  A )  +c  ( aleph `  B )
)  e.  _V  ->  ( ( ( aleph `  A
)  +c  ( aleph `  B ) )  =  ( ( aleph `  A
)  u.  ( aleph `  B ) )  -> 
( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) ) )
261, 24, 25mpsyl 61 . . 3  |-  ( ( -.  A  e.  On  /\ 
-.  B  e.  On )  ->  ( ( aleph `  A )  +c  ( aleph `  B ) ) 
~~  ( ( aleph `  A )  u.  ( aleph `  B ) ) )
2726ex 425 . 2  |-  ( -.  A  e.  On  ->  ( -.  B  e.  On  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) ) )
28 alephgeom 7593 . . 3  |-  ( A  e.  On  <->  om  C_  ( aleph `  A ) )
29 fvex 5391 . . . . 5  |-  ( aleph `  A )  e.  _V
30 ssdomg 6793 . . . . 5  |-  ( (
aleph `  A )  e. 
_V  ->  ( om  C_  ( aleph `  A )  ->  om 
~<_  ( aleph `  A )
) )
3129, 30ax-mp 10 . . . 4  |-  ( om  C_  ( aleph `  A )  ->  om  ~<_  ( aleph `  A
) )
32 alephon 7580 . . . . . 6  |-  ( aleph `  A )  e.  On
33 onenon 7466 . . . . . 6  |-  ( (
aleph `  A )  e.  On  ->  ( aleph `  A )  e.  dom  card )
3432, 33ax-mp 10 . . . . 5  |-  ( aleph `  A )  e.  dom  card
35 alephon 7580 . . . . . 6  |-  ( aleph `  B )  e.  On
36 onenon 7466 . . . . . 6  |-  ( (
aleph `  B )  e.  On  ->  ( aleph `  B )  e.  dom  card )
3735, 36ax-mp 10 . . . . 5  |-  ( aleph `  B )  e.  dom  card
38 infcda 7718 . . . . 5  |-  ( ( ( aleph `  A )  e.  dom  card  /\  ( aleph `  B )  e. 
dom  card  /\  om  ~<_  ( aleph `  A ) )  -> 
( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
3934, 37, 38mp3an12 1272 . . . 4  |-  ( om  ~<_  ( aleph `  A )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
4031, 39syl 17 . . 3  |-  ( om  C_  ( aleph `  A )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
4128, 40sylbi 189 . 2  |-  ( A  e.  On  ->  (
( aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
) )
42 alephgeom 7593 . . 3  |-  ( B  e.  On  <->  om  C_  ( aleph `  B ) )
43 fvex 5391 . . . . 5  |-  ( aleph `  B )  e.  _V
44 ssdomg 6793 . . . . 5  |-  ( (
aleph `  B )  e. 
_V  ->  ( om  C_  ( aleph `  B )  ->  om 
~<_  ( aleph `  B )
) )
4543, 44ax-mp 10 . . . 4  |-  ( om  C_  ( aleph `  B )  ->  om  ~<_  ( aleph `  B
) )
46 cdacomen 7691 . . . . . 6  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  B )  +c  ( aleph `  A )
)
47 infcda 7718 . . . . . . 7  |-  ( ( ( aleph `  B )  e.  dom  card  /\  ( aleph `  A )  e. 
dom  card  /\  om  ~<_  ( aleph `  B ) )  -> 
( ( aleph `  B
)  +c  ( aleph `  A ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )
4837, 34, 47mp3an12 1272 . . . . . 6  |-  ( om  ~<_  ( aleph `  B )  ->  ( ( aleph `  B
)  +c  ( aleph `  A ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )
49 entr 6798 . . . . . 6  |-  ( ( ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  B
)  +c  ( aleph `  A ) )  /\  ( ( aleph `  B
)  +c  ( aleph `  A ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )  ->  ( ( aleph `  A )  +c  ( aleph `  B ) ) 
~~  ( ( aleph `  B )  u.  ( aleph `  A ) ) )
5046, 48, 49sylancr 647 . . . . 5  |-  ( om  ~<_  ( aleph `  B )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  B
)  u.  ( aleph `  A ) ) )
51 uncom 3229 . . . . 5  |-  ( (
aleph `  B )  u.  ( aleph `  A )
)  =  ( (
aleph `  A )  u.  ( aleph `  B )
)
5250, 51syl6breq 3959 . . . 4  |-  ( om  ~<_  ( aleph `  B )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
5345, 52syl 17 . . 3  |-  ( om  C_  ( aleph `  B )  ->  ( ( aleph `  A
)  +c  ( aleph `  B ) )  ~~  ( ( aleph `  A
)  u.  ( aleph `  B ) ) )
5442, 53sylbi 189 . 2  |-  ( B  e.  On  ->  (
( aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
) )
5527, 41, 54pm2.61ii 159 1  |-  ( (
aleph `  A )  +c  ( aleph `  B )
)  ~~  ( ( aleph `  A )  u.  ( aleph `  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2727    u. cun 3076    C_ wss 3078   (/)c0 3362   {csn 3544   class class class wbr 3920   Oncon0 4285   omcom 4547    X. cxp 4578   dom cdm 4580    Fn wfn 4587   ` cfv 4592  (class class class)co 5710   1oc1o 6358    ~~ cen 6746    ~<_ cdom 6747   cardccrd 7452   alephcale 7453    +c ccda 7677
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-oi 7109  df-har 7156  df-card 7456  df-aleph 7457  df-cda 7678
  Copyright terms: Public domain W3C validator