MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph0 Unicode version

Theorem aleph0 7903
Description: The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers  om (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written 
aleph_0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph...the first letter in the Hebrew alphabet...is also the first letter of the Hebrew word...(einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
aleph0  |-  ( aleph `  (/) )  =  om

Proof of Theorem aleph0
StepHypRef Expression
1 df-aleph 7783 . . 3  |-  aleph  =  rec (har ,  om )
21fveq1i 5688 . 2  |-  ( aleph `  (/) )  =  ( rec (har ,  om ) `  (/) )
3 omex 7554 . . 3  |-  om  e.  _V
43rdg0 6638 . 2  |-  ( rec (har ,  om ) `  (/) )  =  om
52, 4eqtri 2424 1  |-  ( aleph `  (/) )  =  om
Colors of variables: wff set class
Syntax hints:    = wceq 1649   (/)c0 3588   omcom 4804   ` cfv 5413   reccrdg 6626  harchar 7480   alephcale 7779
This theorem is referenced by:  alephon  7906  alephcard  7907  alephgeom  7919  cardaleph  7926  alephfplem1  7941  pwcfsdom  8414  alephom  8416  winalim2  8527  aleph1re  12799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-recs 6592  df-rdg 6627  df-aleph 7783
  Copyright terms: Public domain W3C validator