MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph0 Unicode version

Theorem aleph0 7577
Description: The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers  om (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written 
aleph_0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph...the first letter in the Hebrew alphabet...is also the first letter of the Hebrew word...(einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
aleph0  |-  ( aleph `  (/) )  =  om

Proof of Theorem aleph0
StepHypRef Expression
1 df-aleph 7457 . . 3  |-  aleph  =  rec (har ,  om )
21fveq1i 5378 . 2  |-  ( aleph `  (/) )  =  ( rec (har ,  om ) `  (/) )
3 omex 7228 . . 3  |-  om  e.  _V
43rdg0 6320 . 2  |-  ( rec (har ,  om ) `  (/) )  =  om
52, 4eqtri 2273 1  |-  ( aleph `  (/) )  =  om
Colors of variables: wff set class
Syntax hints:    = wceq 1619   (/)c0 3362   omcom 4547   ` cfv 4592   reccrdg 6308  harchar 7154   alephcale 7453
This theorem is referenced by:  alephon  7580  alephcard  7581  alephgeom  7593  cardaleph  7600  alephfplem1  7615  pwcfsdom  8085  alephom  8087  winalim2  8198  aleph1re  12397
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-recs 6274  df-rdg 6309  df-aleph 7457
  Copyright terms: Public domain W3C validator