MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albiim Structured version   Unicode version

Theorem albiim 1666
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
albiim  |-  ( A. x ( ph  <->  ps )  <->  ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ph ) ) )

Proof of Theorem albiim
StepHypRef Expression
1 dfbi2 628 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
21albii 1611 . 2  |-  ( A. x ( ph  <->  ps )  <->  A. x ( ( ph  ->  ps )  /\  ( ps  ->  ph ) ) )
3 19.26 1648 . 2  |-  ( A. x ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  <->  ( A. x ( ph  ->  ps )  /\  A. x
( ps  ->  ph )
) )
42, 3bitri 249 1  |-  ( A. x ( ph  <->  ps )  <->  ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  2albiim  1667  mo2v  2269  mo2vOLD  2270  mo2vOLDOLD  2271  eu1  2312  eu1OLD  2313  eqss  3480  ssext  4656  asymref2  5324  pm14.122a  29825
  Copyright terms: Public domain W3C validator