Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aistbistaandb Structured version   Unicode version

Theorem aistbistaandb 37945
Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for (a and b). (Contributed by Jarvin Udandy, 9-Sep-2016.)
Hypotheses
Ref Expression
aistbistaandb.1  |-  ( ph  <-> T.  )
aistbistaandb.2  |-  ( ps  <-> T.  )
Assertion
Ref Expression
aistbistaandb  |-  ( ph  /\ 
ps )

Proof of Theorem aistbistaandb
StepHypRef Expression
1 aistbistaandb.1 . . 3  |-  ( ph  <-> T.  )
21aistia 37932 . 2  |-  ph
3 aistbistaandb.2 . . 3  |-  ( ps  <-> T.  )
43aistia 37932 . 2  |-  ps
52, 4pm3.2i 456 1  |-  ( ph  /\ 
ps )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370   T. wtru 1438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator