Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aisfbistiaxb Structured version   Visualization version   Unicode version

Theorem aisfbistiaxb 38508
Description: Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
aisfbistiaxb.1  |-  ( ph  <-> F.  )
aisfbistiaxb.2  |-  ( ps  <-> T.  )
Assertion
Ref Expression
aisfbistiaxb  |-  ( ph  \/_ 
ps )

Proof of Theorem aisfbistiaxb
StepHypRef Expression
1 aisfbistiaxb.1 . . 3  |-  ( ph  <-> F.  )
21aisfina 38485 . 2  |-  -.  ph
3 aisfbistiaxb.2 . . 3  |-  ( ps  <-> T.  )
43aistia 38484 . 2  |-  ps
52, 4abnotataxb 38504 1  |-  ( ph  \/_ 
ps )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    \/_ wxo 1405   T. wtru 1445   F. wfal 1449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-xor 1406  df-tru 1447  df-fal 1450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator