Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aifftbifffaibifff Structured version   Unicode version

Theorem aifftbifffaibifff 38229
 Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.)
Hypotheses
Ref Expression
aifftbifffaibifff.1
aifftbifffaibifff.2
Assertion
Ref Expression
aifftbifffaibifff

Proof of Theorem aifftbifffaibifff
StepHypRef Expression
1 aifftbifffaibifff.1 . . . . 5
21aistia 38203 . . . 4
3 aifftbifffaibifff.2 . . . . 5
43aisfina 38204 . . . 4
52, 4abnotbtaxb 38222 . . 3
65axorbtnotaiffb 38209 . 2
7 nbfal 1449 . . 3
87biimpi 198 . 2
96, 8ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 188   wtru 1439   wfal 1443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 189  df-an 373  df-xor 1402  df-tru 1441  df-fal 1444 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator