Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aifftbifffaibif Structured version   Unicode version

Theorem aifftbifffaibif 38222
 Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.)
Hypotheses
Ref Expression
aifftbifffaibif.1
aifftbifffaibif.2
Assertion
Ref Expression
aifftbifffaibif

Proof of Theorem aifftbifffaibif
StepHypRef Expression
1 aifftbifffaibif.1 . . . . 5
21aistia 38197 . . . 4
3 aifftbifffaibif.2 . . . . 5
43aisfina 38198 . . . 4
52, 4pm3.2i 456 . . 3
6 annim 426 . . . 4
76biimpi 197 . . 3
85, 7ax-mp 5 . 2
98bifal 1450 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 187   wa 370   wtru 1438   wfal 1442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-fal 1443 This theorem is referenced by:  atnaiana  38224
 Copyright terms: Public domain W3C validator