Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aibnbaif Structured version   Unicode version

Theorem aibnbaif 38365
Description: Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.)
Hypotheses
Ref Expression
aibnbaif.1  |-  ( ph  ->  ps )
aibnbaif.2  |-  -.  ps
Assertion
Ref Expression
aibnbaif  |-  ( ph  <-> F.  )

Proof of Theorem aibnbaif
StepHypRef Expression
1 aibnbaif.1 . . 3  |-  ( ph  ->  ps )
2 aibnbaif.2 . . 3  |-  -.  ps
31, 2aibnbna 38364 . 2  |-  -.  ph
43bifal 1450 1  |-  ( ph  <-> F.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187   F. wfal 1442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-tru 1440  df-fal 1443
This theorem is referenced by:  conimpf  38376  conimpfalt  38377  dandysum2p2e4  38457
  Copyright terms: Public domain W3C validator