Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aibandbiaiffaiffb Structured version   Unicode version

Theorem aibandbiaiffaiffb 38352
Description: A closed form showing (a implies b and b implies a) same-as (a same-as b) (Contributed by Jarvin Udandy, 3-Sep-2016.)
Assertion
Ref Expression
aibandbiaiffaiffb  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  <->  ( ph  <->  ps ) )

Proof of Theorem aibandbiaiffaiffb
StepHypRef Expression
1 dfbi2 632 . 2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
21bicomi 205 1  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  <->  ( ph  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator