Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvres Structured version   Unicode version

Theorem afvres 32499
Description: The value of a restricted function, analogous to fvres 5862. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
afvres  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )

Proof of Theorem afvres
StepHypRef Expression
1 elin 3673 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  <->  ( A  e.  B  /\  A  e. 
dom  F ) )
21biimpri 206 . . . . . . . 8  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  ( B  i^i  dom  F
) )
3 dmres 5282 . . . . . . . 8  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
42, 3syl6eleqr 2553 . . . . . . 7  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  dom  ( F  |`  B ) )
54ex 432 . . . . . 6  |-  ( A  e.  B  ->  ( A  e.  dom  F  ->  A  e.  dom  ( F  |`  B ) ) )
6 snssi 4160 . . . . . . . . . 10  |-  ( A  e.  B  ->  { A }  C_  B )
76resabs1d 5291 . . . . . . . . 9  |-  ( A  e.  B  ->  (
( F  |`  B )  |`  { A } )  =  ( F  |`  { A } ) )
87eqcomd 2462 . . . . . . . 8  |-  ( A  e.  B  ->  ( F  |`  { A }
)  =  ( ( F  |`  B )  |` 
{ A } ) )
98funeqd 5591 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  <->  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
109biimpd 207 . . . . . 6  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  ->  Fun  ( ( F  |`  B )  |`  { A } ) ) )
115, 10anim12d 561 . . . . 5  |-  ( A  e.  B  ->  (
( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
1211impcom 428 . . . 4  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) )
13 df-dfat 32443 . . . . 5  |-  ( ( F  |`  B ) defAt  A  <-> 
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
14 afvfundmfveq 32465 . . . . 5  |-  ( ( F  |`  B ) defAt  A  ->  ( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1513, 14sylbir 213 . . . 4  |-  ( ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) )  -> 
( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1612, 15syl 16 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
17 fvres 5862 . . . 4  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
1817adantl 464 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
19 df-dfat 32443 . . . . . 6  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
20 afvfundmfveq 32465 . . . . . 6  |-  ( F defAt 
A  ->  ( F''' A )  =  ( F `
 A ) )
2119, 20sylbir 213 . . . . 5  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  ( F `  A ) )
2221eqcomd 2462 . . . 4  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F `  A )  =  ( F''' A ) )
2322adantr 463 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( F `  A )  =  ( F''' A ) )
2416, 18, 233eqtrd 2499 . 2  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
25 pm3.4 559 . . . . . . . . . 10  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
261, 25sylbi 195 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2726, 3eleq2s 2562 . . . . . . . 8  |-  ( A  e.  dom  ( F  |`  B )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2827com12 31 . . . . . . 7  |-  ( A  e.  B  ->  ( A  e.  dom  ( F  |`  B )  ->  A  e.  dom  F ) )
297funeqd 5591 . . . . . . . 8  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  <->  Fun  ( F  |`  { A } ) ) )
3029biimpd 207 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  ->  Fun  ( F  |`  { A } ) ) )
3128, 30anim12d 561 . . . . . 6  |-  ( A  e.  B  ->  (
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) ) )
3231con3d 133 . . . . 5  |-  ( A  e.  B  ->  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
3332impcom 428 . . . 4  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
34 afvnfundmuv 32466 . . . . 5  |-  ( -.  ( F  |`  B ) defAt 
A  ->  ( ( F  |`  B )''' A )  =  _V )
3513, 34sylnbir 305 . . . 4  |-  ( -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( ( F  |`  B )''' A )  =  _V )
3633, 35syl 16 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  _V )
37 afvnfundmuv 32466 . . . . . 6  |-  ( -.  F defAt  A  ->  ( F''' A )  =  _V )
3819, 37sylnbir 305 . . . . 5  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  _V )
3938eqcomd 2462 . . . 4  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  _V  =  ( F''' A ) )
4039adantr 463 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  _V  =  ( F''' A ) )
4136, 40eqtrd 2495 . 2  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
4224, 41pm2.61ian 788 1  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106    i^i cin 3460   {csn 4016   dom cdm 4988    |` cres 4990   Fun wfun 5564   ` cfv 5570   defAt wdfat 32440  '''cafv 32441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-res 5000  df-iota 5534  df-fun 5572  df-fv 5578  df-dfat 32443  df-afv 32444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator