Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvpcfv0 Structured version   Unicode version

Theorem afvpcfv0 31698
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvpcfv0  |-  ( ( F''' A )  =  _V  ->  ( F `  A
)  =  (/) )

Proof of Theorem afvpcfv0
StepHypRef Expression
1 dfafv2 31684 . . 3  |-  ( F''' A )  =  if ( F defAt  A , 
( F `  A
) ,  _V )
21eqeq1i 2474 . 2  |-  ( ( F''' A )  =  _V  <->  if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V )
3 eqcom 2476 . . . 4  |-  ( if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V  <->  _V  =  if ( F defAt  A ,  ( F `  A ) ,  _V ) )
4 eqif 3977 . . . 4  |-  ( _V  =  if ( F defAt 
A ,  ( F `
 A ) ,  _V )  <->  ( ( F defAt  A  /\  _V  =  ( F `  A ) )  \/  ( -.  F defAt  A  /\  _V  =  _V ) ) )
53, 4bitri 249 . . 3  |-  ( if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V  <->  ( ( F defAt 
A  /\  _V  =  ( F `  A ) )  \/  ( -.  F defAt  A  /\  _V  =  _V ) ) )
6 fveqvfvv 31676 . . . . . 6  |-  ( ( F `  A )  =  _V  ->  ( F `  A )  =  (/) )
76eqcoms 2479 . . . . 5  |-  ( _V  =  ( F `  A )  ->  ( F `  A )  =  (/) )
87adantl 466 . . . 4  |-  ( ( F defAt  A  /\  _V  =  ( F `  A ) )  -> 
( F `  A
)  =  (/) )
9 fvfundmfvn0 5896 . . . . . . 7  |-  ( ( F `  A )  =/=  (/)  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) )
10 df-dfat 31668 . . . . . . 7  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
119, 10sylibr 212 . . . . . 6  |-  ( ( F `  A )  =/=  (/)  ->  F defAt  A )
1211necon1bi 2700 . . . . 5  |-  ( -.  F defAt  A  ->  ( F `  A )  =  (/) )
1312adantr 465 . . . 4  |-  ( ( -.  F defAt  A  /\  _V  =  _V )  ->  ( F `  A
)  =  (/) )
148, 13jaoi 379 . . 3  |-  ( ( ( F defAt  A  /\  _V  =  ( F `  A ) )  \/  ( -.  F defAt  A  /\  _V  =  _V )
)  ->  ( F `  A )  =  (/) )
155, 14sylbi 195 . 2  |-  ( if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V  ->  ( F `  A )  =  (/) )
162, 15sylbi 195 1  |-  ( ( F''' A )  =  _V  ->  ( F `  A
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113   (/)c0 3785   ifcif 3939   {csn 4027   dom cdm 4999    |` cres 5001   Fun wfun 5580   ` cfv 5586   defAt wdfat 31665  '''cafv 31666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-res 5011  df-iota 5549  df-fun 5588  df-fv 5594  df-dfat 31668  df-afv 31669
This theorem is referenced by:  afvfv0bi  31704  aovpcov0  31742
  Copyright terms: Public domain W3C validator