Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveu Structured version   Unicode version

Theorem afveu 30199
Description: The value of a function at a unique point, analogous to fveu 5783. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
afveu  |-  ( E! x  A F x  ->  ( F''' A )  =  U. { x  |  A F x }
)
Distinct variable groups:    x, A    x, F

Proof of Theorem afveu
StepHypRef Expression
1 df-br 4393 . . . 4  |-  ( A F x  <->  <. A ,  x >.  e.  F )
21eubii 2285 . . 3  |-  ( E! x  A F x  <-> 
E! x <. A ,  x >.  e.  F )
3 eu2ndop1stv 30166 . . 3  |-  ( E! x <. A ,  x >.  e.  F  ->  A  e.  _V )
42, 3sylbi 195 . 2  |-  ( E! x  A F x  ->  A  e.  _V )
5 euex 2288 . . . . 5  |-  ( E! x  A F x  ->  E. x  A F x )
6 eldmg 5135 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  dom  F  <->  E. x  A F x ) )
75, 6syl5ibrcom 222 . . . 4  |-  ( E! x  A F x  ->  ( A  e. 
_V  ->  A  e.  dom  F ) )
87impcom 430 . . 3  |-  ( ( A  e.  _V  /\  E! x  A F x )  ->  A  e.  dom  F )
9 dfdfat2 30177 . . . . . . 7  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  E! x  A F x ) )
10 afvfundmfveq 30184 . . . . . . . . 9  |-  ( F defAt 
A  ->  ( F''' A )  =  ( F `
 A ) )
11 fveu 5783 . . . . . . . . 9  |-  ( E! x  A F x  ->  ( F `  A )  =  U. { x  |  A F x } )
1210, 11sylan9eq 2512 . . . . . . . 8  |-  ( ( F defAt  A  /\  E! x  A F x )  ->  ( F''' A )  =  U. { x  |  A F x }
)
1312ex 434 . . . . . . 7  |-  ( F defAt 
A  ->  ( E! x  A F x  -> 
( F''' A )  =  U. { x  |  A F x } ) )
149, 13sylbir 213 . . . . . 6  |-  ( ( A  e.  dom  F  /\  E! x  A F x )  ->  ( E! x  A F x  ->  ( F''' A )  =  U. { x  |  A F x }
) )
1514expcom 435 . . . . 5  |-  ( E! x  A F x  ->  ( A  e. 
dom  F  ->  ( E! x  A F x  ->  ( F''' A )  =  U. { x  |  A F x }
) ) )
1615pm2.43a 49 . . . 4  |-  ( E! x  A F x  ->  ( A  e. 
dom  F  ->  ( F''' A )  =  U. { x  |  A F x } ) )
1716adantl 466 . . 3  |-  ( ( A  e.  _V  /\  E! x  A F x )  ->  ( A  e.  dom  F  -> 
( F''' A )  =  U. { x  |  A F x } ) )
188, 17mpd 15 . 2  |-  ( ( A  e.  _V  /\  E! x  A F x )  ->  ( F''' A )  =  U. { x  |  A F x } )
194, 18mpancom 669 1  |-  ( E! x  A F x  ->  ( F''' A )  =  U. { x  |  A F x }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E!weu 2260   {cab 2436   _Vcvv 3070   <.cop 3983   U.cuni 4191   class class class wbr 4392   dom cdm 4940   ` cfv 5518   defAt wdfat 30157  '''cafv 30158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-opab 4451  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-res 4952  df-iota 5481  df-fun 5520  df-fv 5526  df-dfat 30160  df-afv 30161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator