MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aev-o Structured version   Unicode version

Theorem aev-o 2254
Description: A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-c16 2216. Version of aev 1890 using ax-c11 2211. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
aev-o  |-  ( A. x  x  =  y  ->  A. z  w  =  v )
Distinct variable group:    x, y

Proof of Theorem aev-o
Dummy variables  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbae-o 2225 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
2 hbae-o 2225 . . . 4  |-  ( A. x  x  =  y  ->  A. t A. x  x  =  y )
3 ax-7 1739 . . . . 5  |-  ( x  =  t  ->  (
x  =  y  -> 
t  =  y ) )
43spimv 1978 . . . 4  |-  ( A. x  x  =  y  ->  t  =  y )
52, 4alrimih 1622 . . 3  |-  ( A. x  x  =  y  ->  A. t  t  =  y )
6 ax-7 1739 . . . . . . . 8  |-  ( y  =  u  ->  (
y  =  t  ->  u  =  t )
)
7 equcomi 1742 . . . . . . . 8  |-  ( u  =  t  ->  t  =  u )
86, 7syl6 33 . . . . . . 7  |-  ( y  =  u  ->  (
y  =  t  -> 
t  =  u ) )
98spimv 1978 . . . . . 6  |-  ( A. y  y  =  t  ->  t  =  u )
109aecoms-o 2224 . . . . 5  |-  ( A. t  t  =  y  ->  t  =  u )
1110axc4i-o 2222 . . . 4  |-  ( A. t  t  =  y  ->  A. t  t  =  u )
12 hbae-o 2225 . . . . 5  |-  ( A. t  t  =  u  ->  A. v A. t 
t  =  u )
13 ax-7 1739 . . . . . 6  |-  ( t  =  v  ->  (
t  =  u  -> 
v  =  u ) )
1413spimv 1978 . . . . 5  |-  ( A. t  t  =  u  ->  v  =  u )
1512, 14alrimih 1622 . . . 4  |-  ( A. t  t  =  u  ->  A. v  v  =  u )
16 aecom-o 2223 . . . 4  |-  ( A. v  v  =  u  ->  A. u  u  =  v )
1711, 15, 163syl 20 . . 3  |-  ( A. t  t  =  y  ->  A. u  u  =  v )
18 ax-7 1739 . . . 4  |-  ( u  =  w  ->  (
u  =  v  ->  w  =  v )
)
1918spimv 1978 . . 3  |-  ( A. u  u  =  v  ->  w  =  v )
205, 17, 193syl 20 . 2  |-  ( A. x  x  =  y  ->  w  =  v )
211, 20alrimih 1622 1  |-  ( A. x  x  =  y  ->  A. z  w  =  v )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-c5 2207  ax-c4 2208  ax-c7 2209  ax-c11 2211  ax-c9 2214
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-nf 1600
This theorem is referenced by:  ax16g-o  2257
  Copyright terms: Public domain W3C validator