![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aecoms | Structured version Visualization version Unicode version |
Description: A commutation rule for identical variable specifiers. (Contributed by NM, 10-May-1993.) |
Ref | Expression |
---|---|
aecoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
aecoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom 2156 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | aecoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 200 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-10 1926 ax-12 1944 ax-13 2102 |
This theorem depends on definitions: df-bi 190 df-an 377 df-ex 1675 df-nf 1679 |
This theorem is referenced by: axc11 2159 nd4 9046 axrepnd 9050 axpownd 9057 axregnd 9060 axinfnd 9062 axacndlem5 9067 axacnd 9068 wl-ax11-lem1 31961 wl-ax11-lem3 31963 wl-ax11-lem9 31969 wl-ax11-lem10 31970 e2ebind 36975 |
Copyright terms: Public domain | W3C validator |