Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aecom-o Structured version   Unicode version

Theorem aecom-o 32396
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when  x and  y are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of aecom 2107 using ax-c11 32384. Unlike axc11nfromc11 32422, this version does not require ax-5 1749. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
aecom-o  |-  ( A. x  x  =  y  ->  A. y  y  =  x )

Proof of Theorem aecom-o
StepHypRef Expression
1 ax-c11 32384 . . 3  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
21pm2.43i 50 . 2  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
3 equcomi 1844 . . 3  |-  ( x  =  y  ->  y  =  x )
43alimi 1681 . 2  |-  ( A. y  x  =  y  ->  A. y  y  =  x )
52, 4syl 17 1  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-c11 32384
This theorem depends on definitions:  df-bi 189  df-ex 1661
This theorem is referenced by:  aecoms-o  32397  naecoms-o  32423  aev-o  32427  ax12indalem  32441
  Copyright terms: Public domain W3C validator