MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  advlogexp Unicode version

Theorem advlogexp 20499
Description: The antiderivative of a power of the logarithm. (Set  A  =  1 and multiply by  ( -u 1
) ^ N  x.  N ! to get the antiderivative of  log ( x ) ^ N itself.) (Contributed by Mario Carneiro, 22-May-2016.)
Assertion
Ref Expression
advlogexp  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  x. 
sum_ k  e.  ( 0 ... N ) ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) ) ) )
Distinct variable groups:    x, k, A    k, N, x

Proof of Theorem advlogexp
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11267 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( 0 ... N
)  e.  Fin )
2 rpcn 10576 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  CC )
32adantl 453 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  x  e.  CC )
4 rpdivcl 10590 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  x  e.  RR+ )  ->  ( A  /  x )  e.  RR+ )
54adantlr 696 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( A  /  x
)  e.  RR+ )
65relogcld 20471 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( log `  ( A  /  x ) )  e.  RR )
7 elfznn0 11039 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
8 reexpcl 11353 . . . . . . . . 9  |-  ( ( ( log `  ( A  /  x ) )  e.  RR  /\  k  e.  NN0 )  ->  (
( log `  ( A  /  x ) ) ^ k )  e.  RR )
96, 7, 8syl2an 464 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... N ) )  ->  ( ( log `  ( A  /  x ) ) ^
k )  e.  RR )
107adantl 453 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... N ) )  ->  k  e.  NN0 )
11 faccl 11531 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
1210, 11syl 16 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... N ) )  ->  ( ! `  k )  e.  NN )
139, 12nndivred 10004 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... N ) )  ->  ( (
( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) )  e.  RR )
1413recnd 9070 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... N ) )  ->  ( (
( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) )  e.  CC )
151, 3, 14fsummulc2 12522 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( x  x.  sum_ k  e.  ( 0 ... N ) ( ( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  = 
sum_ k  e.  ( 0 ... N ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) ) )
16 simplr 732 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  N  e.  NN0 )
17 nn0uz 10476 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
1816, 17syl6eleq 2494 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  N  e.  ( ZZ>= ` 
0 ) )
193adantr 452 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... N ) )  ->  x  e.  CC )
2019, 14mulcld 9064 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 0 ... N ) )  ->  ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) )  e.  CC )
21 oveq2 6048 . . . . . . . 8  |-  ( k  =  0  ->  (
( log `  ( A  /  x ) ) ^ k )  =  ( ( log `  ( A  /  x ) ) ^ 0 ) )
22 fveq2 5687 . . . . . . . . 9  |-  ( k  =  0  ->  ( ! `  k )  =  ( ! ` 
0 ) )
23 fac0 11524 . . . . . . . . 9  |-  ( ! `
 0 )  =  1
2422, 23syl6eq 2452 . . . . . . . 8  |-  ( k  =  0  ->  ( ! `  k )  =  1 )
2521, 24oveq12d 6058 . . . . . . 7  |-  ( k  =  0  ->  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) )  =  ( ( ( log `  ( A  /  x ) ) ^ 0 )  / 
1 ) )
2625oveq2d 6056 . . . . . 6  |-  ( k  =  0  ->  (
x  x.  ( ( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  =  ( x  x.  (
( ( log `  ( A  /  x ) ) ^ 0 )  / 
1 ) ) )
2718, 20, 26fsum1p 12494 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ k  e.  ( 0 ... N ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  =  ( ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ 0 )  /  1 ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... N
) ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) ) ) )
286recnd 9070 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( log `  ( A  /  x ) )  e.  CC )
2928exp0d 11472 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( log `  ( A  /  x ) ) ^ 0 )  =  1 )
3029oveq1d 6055 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( ( log `  ( A  /  x
) ) ^ 0 )  /  1 )  =  ( 1  / 
1 ) )
31 ax-1cn 9004 . . . . . . . . . 10  |-  1  e.  CC
3231div1i 9698 . . . . . . . . 9  |-  ( 1  /  1 )  =  1
3330, 32syl6eq 2452 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( ( log `  ( A  /  x
) ) ^ 0 )  /  1 )  =  1 )
3433oveq2d 6056 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( x  x.  (
( ( log `  ( A  /  x ) ) ^ 0 )  / 
1 ) )  =  ( x  x.  1 ) )
353mulid1d 9061 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( x  x.  1 )  =  x )
3634, 35eqtrd 2436 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( x  x.  (
( ( log `  ( A  /  x ) ) ^ 0 )  / 
1 ) )  =  x )
37 1z 10267 . . . . . . . . 9  |-  1  e.  ZZ
3837a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  1  e.  ZZ )
39 nn0z 10260 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
4039ad2antlr 708 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  N  e.  ZZ )
41 0p1e1 10049 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
4241oveq1i 6050 . . . . . . . . . . 11  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
43 0z 10249 . . . . . . . . . . . 12  |-  0  e.  ZZ
44 fzp1ss 11054 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... N ) 
C_  ( 0 ... N ) )
4543, 44ax-mp 8 . . . . . . . . . . 11  |-  ( ( 0  +  1 ) ... N )  C_  ( 0 ... N
)
4642, 45eqsstr3i 3339 . . . . . . . . . 10  |-  ( 1 ... N )  C_  ( 0 ... N
)
4746sseli 3304 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  k  e.  ( 0 ... N
) )
4847, 20sylan2 461 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... N ) )  ->  ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) )  e.  CC )
49 oveq2 6048 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
( log `  ( A  /  x ) ) ^ k )  =  ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) ) )
50 fveq2 5687 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  ( ! `  k )  =  ( ! `  ( j  +  1 ) ) )
5149, 50oveq12d 6058 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) )  =  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )
5251oveq2d 6056 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  (
x  x.  ( ( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  =  ( x  x.  (
( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) )
5338, 38, 40, 48, 52fsumshftm 12519 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ k  e.  ( 1 ... N ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  = 
sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) )
5442sumeq1i 12447 . . . . . . . 8  |-  sum_ k  e.  ( ( 0  +  1 ) ... N
) ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) )  =  sum_ k  e.  ( 1 ... N
) ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) )
5554a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ k  e.  ( ( 0  +  1 ) ... N ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  = 
sum_ k  e.  ( 1 ... N ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) ) )
56 1m1e0 10024 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
5756oveq1i 6050 . . . . . . . . 9  |-  ( ( 1  -  1 )..^ N )  =  ( 0..^ N )
58 fzoval 11096 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( 1  -  1 )..^ N )  =  ( ( 1  -  1 ) ... ( N  -  1 ) ) )
5940, 58syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( 1  -  1 )..^ N )  =  ( ( 1  -  1 ) ... ( N  -  1 ) ) )
6057, 59syl5eqr 2450 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( 0..^ N )  =  ( ( 1  -  1 ) ... ( N  -  1 ) ) )
6160sumeq1d 12450 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  = 
sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) )
6253, 55, 613eqtr4d 2446 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ k  e.  ( ( 0  +  1 ) ... N ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  = 
sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) )
6336, 62oveq12d 6058 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ 0 )  /  1 ) )  +  sum_ k  e.  ( ( 0  +  1 ) ... N
) ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) ) )  =  ( x  +  sum_ j  e.  ( 0..^ N ) ( x  x.  (
( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) )
6415, 27, 633eqtrd 2440 . . . 4  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( x  x.  sum_ k  e.  ( 0 ... N ) ( ( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) ) )  =  ( x  +  sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) )
6564mpteq2dva 4255 . . 3  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  (
x  e.  RR+  |->  ( x  x.  sum_ k  e.  ( 0 ... N ) ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) ) )  =  ( x  e.  RR+  |->  ( x  +  sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) ) )
6665oveq2d 6056 . 2  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  x. 
sum_ k  e.  ( 0 ... N ) ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) ) ) )  =  ( RR  _D  (
x  e.  RR+  |->  ( x  +  sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) ) ) )
67 reex 9037 . . . . 5  |-  RR  e.  _V
6867prid1 3872 . . . 4  |-  RR  e.  { RR ,  CC }
6968a1i 11 . . 3  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  RR  e.  { RR ,  CC } )
7031a1i 11 . . 3  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  1  e.  CC )
71 recn 9036 . . . . 5  |-  ( x  e.  RR  ->  x  e.  CC )
7271adantl 453 . . . 4  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR )  ->  x  e.  CC )
7331a1i 11 . . . 4  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR )  ->  1  e.  CC )
7469dvmptid 19796 . . . 4  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR  |->  x ) )  =  ( x  e.  RR  |->  1 ) )
75 rpssre 10578 . . . . 5  |-  RR+  C_  RR
7675a1i 11 . . . 4  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  RR+  C_  RR )
77 eqid 2404 . . . . 5  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
7877tgioo2 18787 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
79 ioorp 10944 . . . . . 6  |-  ( 0 (,)  +oo )  =  RR+
80 iooretop 18753 . . . . . 6  |-  ( 0 (,)  +oo )  e.  (
topGen `  ran  (,) )
8179, 80eqeltrri 2475 . . . . 5  |-  RR+  e.  ( topGen `  ran  (,) )
8281a1i 11 . . . 4  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  RR+  e.  ( topGen `  ran  (,) )
)
8369, 72, 73, 74, 76, 78, 77, 82dvmptres 19802 . . 3  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR+  |->  x ) )  =  ( x  e.  RR+  |->  1 ) )
84 fzofi 11268 . . . . 5  |-  ( 0..^ N )  e.  Fin
8584a1i 11 . . . 4  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( 0..^ N )  e.  Fin )
863adantr 452 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  x  e.  CC )
87 elfzouz 11099 . . . . . . . . . 10  |-  ( j  e.  ( 0..^ N )  ->  j  e.  ( ZZ>= `  0 )
)
8887, 17syl6eleqr 2495 . . . . . . . . 9  |-  ( j  e.  ( 0..^ N )  ->  j  e.  NN0 )
89 peano2nn0 10216 . . . . . . . . 9  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
9088, 89syl 16 . . . . . . . 8  |-  ( j  e.  ( 0..^ N )  ->  ( j  +  1 )  e. 
NN0 )
91 reexpcl 11353 . . . . . . . 8  |-  ( ( ( log `  ( A  /  x ) )  e.  RR  /\  (
j  +  1 )  e.  NN0 )  -> 
( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  e.  RR )
926, 90, 91syl2an 464 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( log `  ( A  /  x
) ) ^ (
j  +  1 ) )  e.  RR )
9390adantl 453 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( j  +  1 )  e.  NN0 )
94 faccl 11531 . . . . . . . 8  |-  ( ( j  +  1 )  e.  NN0  ->  ( ! `
 ( j  +  1 ) )  e.  NN )
9593, 94syl 16 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ! `  ( j  +  1 ) )  e.  NN )
9692, 95nndivred 10004 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  e.  RR )
9796recnd 9070 . . . . 5  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  e.  CC )
9886, 97mulcld 9064 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ (
j  +  1 ) )  /  ( ! `
 ( j  +  1 ) ) ) )  e.  CC )
9985, 98fsumcl 12482 . . 3  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  e.  CC )
1006, 16reexpcld 11495 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( log `  ( A  /  x ) ) ^ N )  e.  RR )
101 faccl 11531 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
102101ad2antlr 708 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ! `  N
)  e.  NN )
103100, 102nndivred 10004 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) )  e.  RR )
104103recnd 9070 . . . 4  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) )  e.  CC )
105 subcl 9261 . . . 4  |-  ( ( ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) )  e.  CC  /\  1  e.  CC )  ->  (
( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) )  -  1 )  e.  CC )
106104, 31, 105sylancl 644 . . 3  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  1 )  e.  CC )
10784a1i 11 . . . . 5  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  (
0..^ N )  e. 
Fin )
10898an32s 780 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( x  x.  ( ( ( log `  ( A  /  x
) ) ^ (
j  +  1 ) )  /  ( ! `
 ( j  +  1 ) ) ) )  e.  CC )
1091083impa 1148 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N )  /\  x  e.  RR+ )  -> 
( x  x.  (
( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  e.  CC )
110 reexpcl 11353 . . . . . . . . . . 11  |-  ( ( ( log `  ( A  /  x ) )  e.  RR  /\  j  e.  NN0 )  ->  (
( log `  ( A  /  x ) ) ^ j )  e.  RR )
1116, 88, 110syl2an 464 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( log `  ( A  /  x
) ) ^ j
)  e.  RR )
11288adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  j  e.  NN0 )
113 faccl 11531 . . . . . . . . . . 11  |-  ( j  e.  NN0  ->  ( ! `
 j )  e.  NN )
114112, 113syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ! `  j )  e.  NN )
115111, 114nndivred 10004 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  e.  RR )
116115recnd 9070 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  e.  CC )
11797, 116subcld 9367 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )  e.  CC )
118117an32s 780 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )  e.  CC )
1191183impa 1148 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N )  /\  x  e.  RR+ )  -> 
( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )  e.  CC )
12068a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  RR  e.  { RR ,  CC } )
1212adantl 453 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  x  e.  CC )
12231a1i 11 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  1  e.  CC )
12383adantr 452 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  x ) )  =  ( x  e.  RR+  |->  1 ) )
12497an32s 780 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  e.  CC )
125 negex 9260 . . . . . . . 8  |-  -u (
( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) )  /  x )  e. 
_V
126125a1i 11 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  e.  _V )
127 cnex 9027 . . . . . . . . . . 11  |-  CC  e.  _V
128127prid2 3873 . . . . . . . . . 10  |-  CC  e.  { RR ,  CC }
129128a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  CC  e.  { RR ,  CC } )
13028adantlr 696 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( log `  ( A  /  x ) )  e.  CC )
131 negex 9260 . . . . . . . . . 10  |-  -u (
1  /  x )  e.  _V
132131a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  -u ( 1  /  x )  e.  _V )
133 id 20 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  y  e.  CC )
13488adantl 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  j  e.  NN0 )
135134, 89syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( j  +  1 )  e.  NN0 )
136 expcl 11354 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( y ^ (
j  +  1 ) )  e.  CC )
137133, 135, 136syl2anr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( y ^
( j  +  1 ) )  e.  CC )
138135, 94syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( ! `  ( j  +  1 ) )  e.  NN )
139138nncnd 9972 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( ! `  ( j  +  1 ) )  e.  CC )
140139adantr 452 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ! `  ( j  +  1 ) )  e.  CC )
141138nnne0d 10000 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( ! `  ( j  +  1 ) )  =/=  0
)
142141adantr 452 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ! `  ( j  +  1 ) )  =/=  0
)
143137, 140, 142divcld 9746 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( y ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  e.  CC )
144 expcl 11354 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  j  e.  NN0 )  -> 
( y ^ j
)  e.  CC )
145133, 134, 144syl2anr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( y ^
j )  e.  CC )
146134, 113syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( ! `  j )  e.  NN )
147146nncnd 9972 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( ! `  j )  e.  CC )
148147adantr 452 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ! `  j )  e.  CC )
149134adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  j  e.  NN0 )
150149, 113syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ! `  j )  e.  NN )
151150nnne0d 10000 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ! `  j )  =/=  0
)
152145, 148, 151divcld 9746 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( y ^ j )  / 
( ! `  j
) )  e.  CC )
153 simplll 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  A  e.  RR+ )
154 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
155153, 154relogdivd 20474 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( log `  ( A  /  x ) )  =  ( ( log `  A )  -  ( log `  x ) ) )
156155mpteq2dva 4255 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( x  e.  RR+  |->  ( log `  ( A  /  x ) ) )  =  ( x  e.  RR+  |->  ( ( log `  A )  -  ( log `  x
) ) ) )
157156oveq2d 6056 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  ( A  /  x
) ) ) )  =  ( RR  _D  ( x  e.  RR+  |->  ( ( log `  A )  -  ( log `  x
) ) ) ) )
158 relogcl 20426 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
159158ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( log `  A
)  e.  RR )
160159recnd 9070 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( log `  A
)  e.  CC )
161160adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( log `  A
)  e.  CC )
162 0cn 9040 . . . . . . . . . . . . 13  |-  0  e.  CC
163162a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  0  e.  CC )
164160adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR )  ->  ( log `  A
)  e.  CC )
165162a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR )  ->  0  e.  CC )
166120, 160dvmptc 19797 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR  |->  ( log `  A ) ) )  =  ( x  e.  RR  |->  0 ) )
16775a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  RR+  C_  RR )
16881a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  RR+  e.  ( topGen ` 
ran  (,) ) )
169120, 164, 165, 166, 167, 78, 77, 168dvmptres 19802 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  A ) ) )  =  ( x  e.  RR+  |->  0 ) )
170154relogcld 20471 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( log `  x
)  e.  RR )
171170recnd 9070 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( log `  x
)  e.  CC )
172154rpreccld 10614 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
173 dvrelog 20481 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( log  |`  RR+ )
)  =  ( x  e.  RR+  |->  ( 1  /  x ) )
174 relogf1o 20417 . . . . . . . . . . . . . . . . 17  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
175 f1of 5633 . . . . . . . . . . . . . . . . 17  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
176174, 175mp1i 12 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( log  |`  RR+ ) : RR+ --> RR )
177176feqmptd 5738 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x
) ) )
178 fvres 5704 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( ( log  |`  RR+ ) `  x )  =  ( log `  x ) )
179178mpteq2ia 4251 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x ) )  =  ( x  e.  RR+  |->  ( log `  x ) )
180177, 179syl6eq 2452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( log `  x
) ) )
181180oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( log  |`  RR+ ) )  =  ( RR  _D  ( x  e.  RR+  |->  ( log `  x ) ) ) )
182173, 181syl5reqr 2451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  x ) ) )  =  ( x  e.  RR+  |->  ( 1  /  x ) ) )
183120, 161, 163, 169, 171, 172, 182dvmptsub 19806 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( ( log `  A )  -  ( log `  x
) ) ) )  =  ( x  e.  RR+  |->  ( 0  -  ( 1  /  x
) ) ) )
184157, 183eqtrd 2436 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  ( A  /  x
) ) ) )  =  ( x  e.  RR+  |->  ( 0  -  ( 1  /  x
) ) ) )
185 df-neg 9250 . . . . . . . . . . 11  |-  -u (
1  /  x )  =  ( 0  -  ( 1  /  x
) )
186185mpteq2i 4252 . . . . . . . . . 10  |-  ( x  e.  RR+  |->  -u (
1  /  x ) )  =  ( x  e.  RR+  |->  ( 0  -  ( 1  /  x ) ) )
187184, 186syl6eqr 2454 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  ( A  /  x
) ) ) )  =  ( x  e.  RR+  |->  -u ( 1  /  x ) ) )
188 ovex 6065 . . . . . . . . . . . 12  |-  ( ( j  +  1 )  x.  ( y ^
( ( j  +  1 )  -  1 ) ) )  e. 
_V
189188a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( j  +  1 )  x.  ( y ^ (
( j  +  1 )  -  1 ) ) )  e.  _V )
190 nn0p1nn 10215 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( j  +  1 )  e.  NN )
191134, 190syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( j  +  1 )  e.  NN )
192 dvexp 19792 . . . . . . . . . . . 12  |-  ( ( j  +  1 )  e.  NN  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
( j  +  1 ) ) ) )  =  ( y  e.  CC  |->  ( ( j  +  1 )  x.  ( y ^ (
( j  +  1 )  -  1 ) ) ) ) )
193191, 192syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^ (
j  +  1 ) ) ) )  =  ( y  e.  CC  |->  ( ( j  +  1 )  x.  (
y ^ ( ( j  +  1 )  -  1 ) ) ) ) )
194129, 137, 189, 193, 139, 141dvmptdivc 19804 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( CC  _D  ( y  e.  CC  |->  ( ( y ^
( j  +  1 ) )  /  ( ! `  ( j  +  1 ) ) ) ) )  =  ( y  e.  CC  |->  ( ( ( j  +  1 )  x.  ( y ^ (
( j  +  1 )  -  1 ) ) )  /  ( ! `  ( j  +  1 ) ) ) ) )
195134nn0cnd 10232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  j  e.  CC )
196195adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  j  e.  CC )
197 pncan 9267 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
198196, 31, 197sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( j  +  1 )  - 
1 )  =  j )
199198oveq2d 6056 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( y ^
( ( j  +  1 )  -  1 ) )  =  ( y ^ j ) )
200199oveq2d 6056 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( j  +  1 )  x.  ( y ^ (
( j  +  1 )  -  1 ) ) )  =  ( ( j  +  1 )  x.  ( y ^ j ) ) )
201 facp1 11526 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  ( ! `
 ( j  +  1 ) )  =  ( ( ! `  j )  x.  (
j  +  1 ) ) )
202149, 201syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ! `  ( j  +  1 ) )  =  ( ( ! `  j
)  x.  ( j  +  1 ) ) )
203 peano2cn 9194 . . . . . . . . . . . . . . . 16  |-  ( j  e.  CC  ->  (
j  +  1 )  e.  CC )
204196, 203syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( j  +  1 )  e.  CC )
205148, 204mulcomd 9065 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( ! `
 j )  x.  ( j  +  1 ) )  =  ( ( j  +  1 )  x.  ( ! `
 j ) ) )
206202, 205eqtrd 2436 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ! `  ( j  +  1 ) )  =  ( ( j  +  1 )  x.  ( ! `
 j ) ) )
207200, 206oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( ( j  +  1 )  x.  ( y ^
( ( j  +  1 )  -  1 ) ) )  / 
( ! `  (
j  +  1 ) ) )  =  ( ( ( j  +  1 )  x.  (
y ^ j ) )  /  ( ( j  +  1 )  x.  ( ! `  j ) ) ) )
208191nnne0d 10000 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( j  +  1 )  =/=  0
)
209208adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( j  +  1 )  =/=  0
)
210145, 148, 204, 151, 209divcan5d 9772 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( ( j  +  1 )  x.  ( y ^
j ) )  / 
( ( j  +  1 )  x.  ( ! `  j )
) )  =  ( ( y ^ j
)  /  ( ! `
 j ) ) )
211207, 210eqtrd 2436 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  y  e.  CC )  ->  ( ( ( j  +  1 )  x.  ( y ^
( ( j  +  1 )  -  1 ) ) )  / 
( ! `  (
j  +  1 ) ) )  =  ( ( y ^ j
)  /  ( ! `
 j ) ) )
212211mpteq2dva 4255 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( y  e.  CC  |->  ( ( ( j  +  1 )  x.  ( y ^
( ( j  +  1 )  -  1 ) ) )  / 
( ! `  (
j  +  1 ) ) ) )  =  ( y  e.  CC  |->  ( ( y ^
j )  /  ( ! `  j )
) ) )
213194, 212eqtrd 2436 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( CC  _D  ( y  e.  CC  |->  ( ( y ^
( j  +  1 ) )  /  ( ! `  ( j  +  1 ) ) ) ) )  =  ( y  e.  CC  |->  ( ( y ^
j )  /  ( ! `  j )
) ) )
214 oveq1 6047 . . . . . . . . . 10  |-  ( y  =  ( log `  ( A  /  x ) )  ->  ( y ^
( j  +  1 ) )  =  ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) ) )
215214oveq1d 6055 . . . . . . . . 9  |-  ( y  =  ( log `  ( A  /  x ) )  ->  ( ( y ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  =  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )
216 oveq1 6047 . . . . . . . . . 10  |-  ( y  =  ( log `  ( A  /  x ) )  ->  ( y ^
j )  =  ( ( log `  ( A  /  x ) ) ^ j ) )
217216oveq1d 6055 . . . . . . . . 9  |-  ( y  =  ( log `  ( A  /  x ) )  ->  ( ( y ^ j )  / 
( ! `  j
) )  =  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )
218120, 129, 130, 132, 143, 152, 187, 213, 215, 217dvmptco 19811 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  x.  -u (
1  /  x ) ) ) )
219116an32s 780 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  e.  CC )
220172rpcnd 10606 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  CC )
221219, 220mulneg2d 9443 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  x.  -u (
1  /  x ) )  =  -u (
( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) )  x.  ( 1  /  x ) ) )
222 rpne0 10583 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  =/=  0 )
223222adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  x  =/=  0
)
224219, 121, 223divrecd 9749 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  =  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  x.  (
1  /  x ) ) )
225224negeqd 9256 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  =  -u (
( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) )  x.  ( 1  /  x ) ) )
226221, 225eqtr4d 2439 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  x.  -u (
1  /  x ) )  =  -u (
( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) )  /  x ) )
227226mpteq2dva 4255 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( x  e.  RR+  |->  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  x.  -u (
1  /  x ) ) )  =  ( x  e.  RR+  |->  -u (
( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) )  /  x ) ) )
228218, 227eqtrd 2436 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) )  =  ( x  e.  RR+  |->  -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
) ) )
229120, 121, 122, 123, 124, 126, 228dvmptmul 19800 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( 1  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  +  ( -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x ) ) ) )
23097mulid2d 9062 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( 1  x.  ( ( ( log `  ( A  /  x
) ) ^ (
j  +  1 ) )  /  ( ! `
 ( j  +  1 ) ) ) )  =  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )
231 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  x  e.  RR+ )
232115, 231rerpdivcld 10631 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  e.  RR )
233232recnd 9070 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  e.  CC )
234233, 86mulneg1d 9442 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( -u (
( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) )  /  x )  x.  x )  =  -u ( ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x ) )
235223an32s 780 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  x  =/=  0
)
236116, 86, 235divcan1d 9747 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x )  =  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )
237236negeqd 9256 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  -u ( ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x )  =  -u ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )
238234, 237eqtrd 2436 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( -u (
( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) )  /  x )  x.  x )  =  -u ( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) ) )
239230, 238oveq12d 6058 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( 1  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  +  ( -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x ) )  =  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  +  -u ( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) ) ) )
24097, 116negsubd 9373 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  +  -u ( ( ( log `  ( A  /  x
) ) ^ j
)  /  ( ! `
 j ) ) )  =  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) ) )
241239, 240eqtrd 2436 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  /\  j  e.  ( 0..^ N ) )  ->  ( ( 1  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  +  ( -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x ) )  =  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) ) )
242241an32s 780 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  ( 0..^ N ) )  /\  x  e.  RR+ )  ->  ( ( 1  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  +  ( -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x ) )  =  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) ) )
243242mpteq2dva 4255 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( x  e.  RR+  |->  ( ( 1  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) )  +  ( -u ( ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) )  /  x
)  x.  x ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) ) ) )
244229, 243eqtrd 2436 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  j  e.  (
0..^ N ) )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) ) ) )
24578, 77, 69, 82, 107, 109, 119, 244dvmptfsum 19812 . . . 4  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR+  |->  sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) )  =  ( x  e.  RR+  |->  sum_ j  e.  ( 0..^ N ) ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) ) ) )
246 oveq2 6048 . . . . . . . 8  |-  ( k  =  j  ->  (
( log `  ( A  /  x ) ) ^ k )  =  ( ( log `  ( A  /  x ) ) ^ j ) )
247 fveq2 5687 . . . . . . . 8  |-  ( k  =  j  ->  ( ! `  k )  =  ( ! `  j ) )
248246, 247oveq12d 6058 . . . . . . 7  |-  ( k  =  j  ->  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) )  =  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )
249 oveq2 6048 . . . . . . . 8  |-  ( k  =  N  ->  (
( log `  ( A  /  x ) ) ^ k )  =  ( ( log `  ( A  /  x ) ) ^ N ) )
250 fveq2 5687 . . . . . . . 8  |-  ( k  =  N  ->  ( ! `  k )  =  ( ! `  N ) )
251249, 250oveq12d 6058 . . . . . . 7  |-  ( k  =  N  ->  (
( ( log `  ( A  /  x ) ) ^ k )  / 
( ! `  k
) )  =  ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) ) )
252248, 51, 25, 251, 18, 14fsumtscopo2 12537 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ j  e.  ( 0..^ N ) ( ( ( ( log `  ( A  /  x
) ) ^ (
j  +  1 ) )  /  ( ! `
 ( j  +  1 ) ) )  -  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )  =  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  (
( ( log `  ( A  /  x ) ) ^ 0 )  / 
1 ) ) )
25333oveq2d 6056 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  (
( ( log `  ( A  /  x ) ) ^ 0 )  / 
1 ) )  =  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  1 ) )
254252, 253eqtrd 2436 . . . . 5  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  -> 
sum_ j  e.  ( 0..^ N ) ( ( ( ( log `  ( A  /  x
) ) ^ (
j  +  1 ) )  /  ( ! `
 ( j  +  1 ) ) )  -  ( ( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) )  =  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  1 ) )
255254mpteq2dva 4255 . . . 4  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  (
x  e.  RR+  |->  sum_ j  e.  ( 0..^ N ) ( ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) )  -  (
( ( log `  ( A  /  x ) ) ^ j )  / 
( ! `  j
) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  1 ) ) )
256245, 255eqtrd 2436 . . 3  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR+  |->  sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  1 ) ) )
25769, 3, 70, 83, 99, 106, 256dvmptadd 19799 . 2  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  +  sum_ j  e.  ( 0..^ N ) ( x  x.  ( ( ( log `  ( A  /  x ) ) ^ ( j  +  1 ) )  / 
( ! `  (
j  +  1 ) ) ) ) ) ) )  =  ( x  e.  RR+  |->  ( 1  +  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  1 ) ) ) )
258 pncan3 9269 . . . 4  |-  ( ( 1  e.  CC  /\  ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) )  e.  CC )  -> 
( 1  +  ( ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) )  -  1 ) )  =  ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) ) )
25931, 104, 258sylancr 645 . . 3  |-  ( ( ( A  e.  RR+  /\  N  e.  NN0 )  /\  x  e.  RR+ )  ->  ( 1  +  ( ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) )  -  1 ) )  =  ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) ) )
260259mpteq2dva 4255 . 2  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  (
x  e.  RR+  |->  ( 1  +  ( ( ( ( log `  ( A  /  x ) ) ^ N )  / 
( ! `  N
) )  -  1 ) ) )  =  ( x  e.  RR+  |->  ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) ) ) )
26166, 257, 2603eqtrd 2440 1  |-  ( ( A  e.  RR+  /\  N  e.  NN0 )  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  x. 
sum_ k  e.  ( 0 ... N ) ( ( ( log `  ( A  /  x
) ) ^ k
)  /  ( ! `
 k ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( log `  ( A  /  x
) ) ^ N
)  /  ( ! `
 N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916    C_ wss 3280   {cpr 3775    e. cmpt 4226   ran crn 4838    |` cres 4839   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   RR+crp 10568   (,)cioo 10872   ...cfz 10999  ..^cfzo 11090   ^cexp 11337   !cfa 11521   sum_csu 12434   TopOpenctopn 13604   topGenctg 13620  ℂfldccnfld 16658    _D cdv 19703   logclog 20405
This theorem is referenced by:  logexprlim  20962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407
  Copyright terms: Public domain W3C validator