HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjval Structured version   Unicode version

Theorem adjval 27528
Description: Value of the adjoint function for  T in the domain of  adjh. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
adjval  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  =  ( iota_ u  e.  ( ~H  ^m  ~H ) A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
Distinct variable group:    x, u, y, T

Proof of Theorem adjval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 dmadjop 27526 . . . . 5  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
21biantrurd 510 . . . 4  |-  ( T  e.  dom  adjh  ->  ( ( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  <->  ( T : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) ) )
3 ax-hilex 26637 . . . . . 6  |-  ~H  e.  _V
43, 3elmap 7504 . . . . 5  |-  ( u  e.  ( ~H  ^m  ~H )  <->  u : ~H --> ~H )
54anbi1i 699 . . . 4  |-  ( ( u  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) )  <-> 
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) )
6 3anass 986 . . . 4  |-  ( ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) )  <->  ( T : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) )
72, 5, 63bitr4g 291 . . 3  |-  ( T  e.  dom  adjh  ->  ( ( u  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) )  <->  ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
87iotabidv 5582 . 2  |-  ( T  e.  dom  adjh  ->  ( iota u ( u  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) )  =  ( iota
u ( T : ~H
--> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
9 df-riota 6263 . . 3  |-  ( iota_ u  e.  ( ~H  ^m  ~H ) A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  =  ( iota u ( u  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) )
109a1i 11 . 2  |-  ( T  e.  dom  adjh  ->  (
iota_ u  e.  ( ~H  ^m  ~H ) A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) )  =  ( iota u
( u  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) )
11 dfadj2 27523 . . 3  |-  adjh  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) }
12 feq1 5724 . . . 4  |-  ( t  =  T  ->  (
t : ~H --> ~H  <->  T : ~H
--> ~H ) )
13 fveq1 5876 . . . . . . 7  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
1413oveq2d 6317 . . . . . 6  |-  ( t  =  T  ->  (
x  .ih  ( t `  y ) )  =  ( x  .ih  ( T `  y )
) )
1514eqeq1d 2424 . . . . 5  |-  ( t  =  T  ->  (
( x  .ih  (
t `  y )
)  =  ( ( u `  x ) 
.ih  y )  <->  ( x  .ih  ( T `  y
) )  =  ( ( u `  x
)  .ih  y )
) )
16152ralbidv 2869 . . . 4  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
)  <->  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
1712, 163anbi13d 1337 . . 3  |-  ( t  =  T  ->  (
( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( t `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  <->  ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
1811, 17fvopab5 5985 . 2  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  =  ( iota u
( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) ) )
198, 10, 183eqtr4rd 2474 1  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  =  ( iota_ u  e.  ( ~H  ^m  ~H ) A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   dom cdm 4849   iotacio 5559   -->wf 5593   ` cfv 5597   iota_crio 6262  (class class class)co 6301    ^m cmap 7476   ~Hchil 26557    .ih csp 26560   adjhcado 26593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-hilex 26637  ax-hfi 26717  ax-his1 26720
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-po 4770  df-so 4771  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-2 10668  df-cj 13150  df-re 13151  df-im 13152  df-adjh 27487
This theorem is referenced by:  adjval2  27529  adjbdln  27721
  Copyright terms: Public domain W3C validator