HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjval Structured version   Unicode version

Theorem adjval 26936
Description: Value of the adjoint function for  T in the domain of  adjh. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
adjval  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  =  ( iota_ u  e.  ( ~H  ^m  ~H ) A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
Distinct variable group:    x, u, y, T

Proof of Theorem adjval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 dmadjop 26934 . . . . 5  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
21biantrurd 508 . . . 4  |-  ( T  e.  dom  adjh  ->  ( ( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  <->  ( T : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) ) )
3 ax-hilex 26043 . . . . . 6  |-  ~H  e.  _V
43, 3elmap 7466 . . . . 5  |-  ( u  e.  ( ~H  ^m  ~H )  <->  u : ~H --> ~H )
54anbi1i 695 . . . 4  |-  ( ( u  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) )  <-> 
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) )
6 3anass 977 . . . 4  |-  ( ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) )  <->  ( T : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) )
72, 5, 63bitr4g 288 . . 3  |-  ( T  e.  dom  adjh  ->  ( ( u  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) )  <->  ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
87iotabidv 5578 . 2  |-  ( T  e.  dom  adjh  ->  ( iota u ( u  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) )  =  ( iota
u ( T : ~H
--> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
9 df-riota 6258 . . 3  |-  ( iota_ u  e.  ( ~H  ^m  ~H ) A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  =  ( iota u ( u  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) )
109a1i 11 . 2  |-  ( T  e.  dom  adjh  ->  (
iota_ u  e.  ( ~H  ^m  ~H ) A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) )  =  ( iota u
( u  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) )
11 dfadj2 26931 . . 3  |-  adjh  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) }
12 feq1 5719 . . . 4  |-  ( t  =  T  ->  (
t : ~H --> ~H  <->  T : ~H
--> ~H ) )
13 fveq1 5871 . . . . . . 7  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
1413oveq2d 6312 . . . . . 6  |-  ( t  =  T  ->  (
x  .ih  ( t `  y ) )  =  ( x  .ih  ( T `  y )
) )
1514eqeq1d 2459 . . . . 5  |-  ( t  =  T  ->  (
( x  .ih  (
t `  y )
)  =  ( ( u `  x ) 
.ih  y )  <->  ( x  .ih  ( T `  y
) )  =  ( ( u `  x
)  .ih  y )
) )
16152ralbidv 2901 . . . 4  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
)  <->  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
1712, 163anbi13d 1301 . . 3  |-  ( t  =  T  ->  (
( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( t `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  <->  ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
1811, 17fvopab5 5980 . 2  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  =  ( iota u
( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) ) )
198, 10, 183eqtr4rd 2509 1  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  =  ( iota_ u  e.  ( ~H  ^m  ~H ) A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   dom cdm 5008   iotacio 5555   -->wf 5590   ` cfv 5594   iota_crio 6257  (class class class)co 6296    ^m cmap 7438   ~Hchil 25963    .ih csp 25966   adjhcado 25999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-hilex 26043  ax-hfi 26123  ax-his1 26126
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-2 10615  df-cj 12944  df-re 12945  df-im 12946  df-adjh 26895
This theorem is referenced by:  adjval2  26937  adjbdln  27129
  Copyright terms: Public domain W3C validator