HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeu Structured version   Unicode version

Theorem adjeu 26622
Description: Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
adjeu  |-  ( T : ~H --> ~H  ->  ( T  e.  dom  adjh  <->  E! u  e.  ( ~H  ^m 
~H ) A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) )
Distinct variable group:    x, u, y, T

Proof of Theorem adjeu
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 25730 . . . 4  |-  ~H  e.  _V
2 fex2 6750 . . . 4  |-  ( ( T : ~H --> ~H  /\  ~H  e.  _V  /\  ~H  e.  _V )  ->  T  e.  _V )
31, 1, 2mp3an23 1316 . . 3  |-  ( T : ~H --> ~H  ->  T  e.  _V )
4 feq1 5719 . . . . . . . . 9  |-  ( t  =  T  ->  (
t : ~H --> ~H  <->  T : ~H
--> ~H ) )
5 fveq1 5871 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
65oveq2d 6311 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
x  .ih  ( t `  y ) )  =  ( x  .ih  ( T `  y )
) )
76eqeq1d 2469 . . . . . . . . . 10  |-  ( t  =  T  ->  (
( x  .ih  (
t `  y )
)  =  ( ( u `  x ) 
.ih  y )  <->  ( x  .ih  ( T `  y
) )  =  ( ( u `  x
)  .ih  y )
) )
872ralbidv 2911 . . . . . . . . 9  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
)  <->  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
94, 83anbi13d 1301 . . . . . . . 8  |-  ( t  =  T  ->  (
( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( t `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  <->  ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
10 3anass 977 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) )  <->  ( T : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) )
119, 10syl6bb 261 . . . . . . 7  |-  ( t  =  T  ->  (
( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( t `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  <->  ( T : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) ) )
1211exbidv 1690 . . . . . 6  |-  ( t  =  T  ->  ( E. u ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
)  <->  E. u ( T : ~H --> ~H  /\  ( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) ) ) )
13 19.42v 1949 . . . . . 6  |-  ( E. u ( T : ~H
--> ~H  /\  ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )  <->  ( T : ~H --> ~H  /\  E. u
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) ) )
1412, 13syl6bb 261 . . . . 5  |-  ( t  =  T  ->  ( E. u ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
)  <->  ( T : ~H
--> ~H  /\  E. u
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) ) ) )
15 dfadj2 26618 . . . . . . 7  |-  adjh  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) }
1615dmeqi 5210 . . . . . 6  |-  dom  adjh  =  dom  { <. t ,  u >.  |  (
t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) ) }
17 dmopab 5219 . . . . . 6  |-  dom  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( t `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) }  =  { t  |  E. u ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) ) }
1816, 17eqtri 2496 . . . . 5  |-  dom  adjh  =  { t  |  E. u ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) }
1914, 18elab2g 3257 . . . 4  |-  ( T  e.  _V  ->  ( T  e.  dom  adjh  <->  ( T : ~H --> ~H  /\  E. u
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) ) ) )
2019baibd 907 . . 3  |-  ( ( T  e.  _V  /\  T : ~H --> ~H )  ->  ( T  e.  dom  adjh  <->  E. u ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
213, 20mpancom 669 . 2  |-  ( T : ~H --> ~H  ->  ( T  e.  dom  adjh  <->  E. u ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
22 df-reu 2824 . . 3  |-  ( E! u  e.  ( ~H 
^m  ~H ) A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y )  <->  E! u
( u  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) ) )
231, 1elmap 7459 . . . . 5  |-  ( u  e.  ( ~H  ^m  ~H )  <->  u : ~H --> ~H )
2423anbi1i 695 . . . 4  |-  ( ( u  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) )  <-> 
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) )
2524eubii 2300 . . 3  |-  ( E! u ( u  e.  ( ~H  ^m  ~H )  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) )  <->  E! u
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) )
26 adjmo 26565 . . . 4  |-  E* u
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) )
27 eu5 2305 . . . 4  |-  ( E! u ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) )  <-> 
( E. u ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( u `  x )  .ih  y
) )  /\  E* u ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) ) )
2826, 27mpbiran2 917 . . 3  |-  ( E! u ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) )  <->  E. u ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) )
2922, 25, 283bitri 271 . 2  |-  ( E! u  e.  ( ~H 
^m  ~H ) A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y )  <->  E. u
( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) )
3021, 29syl6bbr 263 1  |-  ( T : ~H --> ~H  ->  ( T  e.  dom  adjh  <->  E! u  e.  ( ~H  ^m 
~H ) A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( u `  x ) 
.ih  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   E!weu 2275   E*wmo 2276   {cab 2452   A.wral 2817   E!wreu 2819   _Vcvv 3118   {copab 4510   dom cdm 5005   -->wf 5590   ` cfv 5594  (class class class)co 6295    ^m cmap 7432   ~Hchil 25650    .ih csp 25653   adjhcado 25686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-hilex 25730  ax-hfvadd 25731  ax-hvcom 25732  ax-hvass 25733  ax-hv0cl 25734  ax-hvaddid 25735  ax-hfvmul 25736  ax-hvmulid 25737  ax-hvdistr2 25740  ax-hvmul0 25741  ax-hfi 25810  ax-his1 25813  ax-his2 25814  ax-his3 25815  ax-his4 25816
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-2 10606  df-cj 12912  df-re 12913  df-im 12914  df-hvsub 25702  df-adjh 26582
This theorem is referenced by:  adjbdln  26816
  Copyright terms: Public domain W3C validator