HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeq Structured version   Unicode version

Theorem adjeq 25351
Description: A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjeq  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( S `  y ) ) )  ->  ( adjh `  T )  =  S )
Distinct variable groups:    x, y, S    x, T, y

Proof of Theorem adjeq
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 25302 . 2  |-  Fun  adjh
2 df-adjh 25265 . . . . . 6  |-  adjh  =  { <. z ,  w >.  |  ( z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( z `
 x )  .ih  y )  =  ( x  .ih  ( w `
 y ) ) ) }
32eleq2i 2507 . . . . 5  |-  ( <. T ,  S >.  e. 
adjh 
<-> 
<. T ,  S >.  e. 
{ <. z ,  w >.  |  ( z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( z `
 x )  .ih  y )  =  ( x  .ih  ( w `
 y ) ) ) } )
4 ax-hilex 24413 . . . . . . 7  |-  ~H  e.  _V
5 fex 5962 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  ~H  e.  _V )  ->  T  e.  _V )
64, 5mpan2 671 . . . . . 6  |-  ( T : ~H --> ~H  ->  T  e.  _V )
7 fex 5962 . . . . . . 7  |-  ( ( S : ~H --> ~H  /\  ~H  e.  _V )  ->  S  e.  _V )
84, 7mpan2 671 . . . . . 6  |-  ( S : ~H --> ~H  ->  S  e.  _V )
9 feq1 5554 . . . . . . . 8  |-  ( z  =  T  ->  (
z : ~H --> ~H  <->  T : ~H
--> ~H ) )
10 fveq1 5702 . . . . . . . . . . 11  |-  ( z  =  T  ->  (
z `  x )  =  ( T `  x ) )
1110oveq1d 6118 . . . . . . . . . 10  |-  ( z  =  T  ->  (
( z `  x
)  .ih  y )  =  ( ( T `
 x )  .ih  y ) )
1211eqeq1d 2451 . . . . . . . . 9  |-  ( z  =  T  ->  (
( ( z `  x )  .ih  y
)  =  ( x 
.ih  ( w `  y ) )  <->  ( ( T `  x )  .ih  y )  =  ( x  .ih  ( w `
 y ) ) ) )
13122ralbidv 2769 . . . . . . . 8  |-  ( z  =  T  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
( z `  x
)  .ih  y )  =  ( x  .ih  ( w `  y
) )  <->  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  .ih  y )  =  ( x  .ih  ( w `
 y ) ) ) )
149, 133anbi13d 1291 . . . . . . 7  |-  ( z  =  T  ->  (
( z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( z `  x )  .ih  y
)  =  ( x 
.ih  ( w `  y ) ) )  <-> 
( T : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( w `  y ) ) ) ) )
15 feq1 5554 . . . . . . . 8  |-  ( w  =  S  ->  (
w : ~H --> ~H  <->  S : ~H
--> ~H ) )
16 fveq1 5702 . . . . . . . . . . 11  |-  ( w  =  S  ->  (
w `  y )  =  ( S `  y ) )
1716oveq2d 6119 . . . . . . . . . 10  |-  ( w  =  S  ->  (
x  .ih  ( w `  y ) )  =  ( x  .ih  ( S `  y )
) )
1817eqeq2d 2454 . . . . . . . . 9  |-  ( w  =  S  ->  (
( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( w `  y ) )  <->  ( ( T `  x )  .ih  y )  =  ( x  .ih  ( S `
 y ) ) ) )
19182ralbidv 2769 . . . . . . . 8  |-  ( w  =  S  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( w `  y
) )  <->  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  .ih  y )  =  ( x  .ih  ( S `
 y ) ) ) )
2015, 193anbi23d 1292 . . . . . . 7  |-  ( w  =  S  ->  (
( T : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( w `  y ) ) )  <-> 
( T : ~H --> ~H  /\  S : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( S `  y ) ) ) ) )
2114, 20opelopabg 4619 . . . . . 6  |-  ( ( T  e.  _V  /\  S  e.  _V )  ->  ( <. T ,  S >.  e.  { <. z ,  w >.  |  (
z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( z `  x
)  .ih  y )  =  ( x  .ih  ( w `  y
) ) ) }  <-> 
( T : ~H --> ~H  /\  S : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( S `  y ) ) ) ) )
226, 8, 21syl2an 477 . . . . 5  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H )  ->  ( <. T ,  S >.  e.  { <. z ,  w >.  |  (
z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( z `  x
)  .ih  y )  =  ( x  .ih  ( w `  y
) ) ) }  <-> 
( T : ~H --> ~H  /\  S : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( S `  y ) ) ) ) )
233, 22syl5bb 257 . . . 4  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H )  ->  ( <. T ,  S >.  e.  adjh  <->  ( T : ~H
--> ~H  /\  S : ~H
--> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  .ih  y )  =  ( x  .ih  ( S `
 y ) ) ) ) )
24 df-3an 967 . . . . 5  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( S `  y ) ) )  <->  ( ( T : ~H --> ~H  /\  S : ~H --> ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( S `  y ) ) ) )
2524baibr 897 . . . 4  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( S `  y ) )  <->  ( T : ~H --> ~H  /\  S : ~H
--> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  .ih  y )  =  ( x  .ih  ( S `
 y ) ) ) ) )
2623, 25bitr4d 256 . . 3  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H )  ->  ( <. T ,  S >.  e.  adjh  <->  A. x  e.  ~H  A. y  e.  ~H  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( S `  y ) ) ) )
2726biimp3ar 1319 . 2  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( S `  y ) ) )  ->  <. T ,  S >.  e.  adjh )
28 funopfv 5743 . 2  |-  ( Fun 
adjh  ->  ( <. T ,  S >.  e.  adjh  ->  (
adjh `  T )  =  S ) )
291, 27, 28mpsyl 63 1  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( S `  y ) ) )  ->  ( adjh `  T )  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2727   _Vcvv 2984   <.cop 3895   {copab 4361   Fun wfun 5424   -->wf 5426   ` cfv 5430  (class class class)co 6103   ~Hchil 24333    .ih csp 24336   adjhcado 24369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-hilex 24413  ax-hfvadd 24414  ax-hvcom 24415  ax-hvass 24416  ax-hv0cl 24417  ax-hvaddid 24418  ax-hfvmul 24419  ax-hvmulid 24420  ax-hvdistr2 24423  ax-hvmul0 24424  ax-hfi 24493  ax-his1 24496  ax-his2 24497  ax-his3 24498  ax-his4 24499
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-po 4653  df-so 4654  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-2 10392  df-cj 12600  df-re 12601  df-im 12602  df-hvsub 24385  df-adjh 25265
This theorem is referenced by:  unopadj2  25354  hmopadj  25355  adj0  25410  adjmul  25508  adjadd  25509
  Copyright terms: Public domain W3C validator