MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubassd Structured version   Unicode version

Theorem addsubassd 9760
Description: Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addsubassd  |-  ( ph  ->  ( ( A  +  B )  -  C
)  =  ( A  +  ( B  -  C ) ) )

Proof of Theorem addsubassd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subaddd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 addsubass 9641 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( A  +  ( B  -  C
) ) )
51, 2, 3, 4syl3anc 1218 1  |-  ( ph  ->  ( ( A  +  B )  -  C
)  =  ( A  +  ( B  -  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756  (class class class)co 6112   CCcc 9301    + caddc 9306    - cmin 9616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-po 4662  df-so 4663  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-ltxr 9444  df-sub 9618
This theorem is referenced by:  hashun3  12168  swrdccatin2  12399  incexclem  13320  gsumccat  15540  mndodconglem  16065  efgredleme  16261  ovollb2lem  20993  ovolunlem1  21002  ply1divex  21630  tangtx  21989  tanarg  22090  affineequiv  22243  chordthmlem4  22252  heron  22255  dquartlem2  22269  quart  22278  atanlogsublem  22332  chtublem  22572  bposlem9  22653  dchrisum0re  22784  mulog2sumlem1  22805  selberglem2  22817  selberg4  22832  selbergr  22839  selberg3r  22840  selberg34r  22842  brbtwn2  23173  ax5seglem2  23197  lt2addrd  26058  archirngz  26228  fibp1  26806  bpoly4  28224  acongeq  29352  jm3.1lem2  29393  stoweidlem26  29847  wallispilem4  29889  wallispi2lem1  29892  wallispi2lem2  29893  wwlkextwrd  30386  wwlkextinj  30388  assraddsubd  31218  bj-bary1lem  32695
  Copyright terms: Public domain W3C validator