MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubass Structured version   Unicode version

Theorem addsubass 9616
Description: Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addsubass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( A  +  ( B  -  C
) ) )

Proof of Theorem addsubass
StepHypRef Expression
1 simp1 983 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
2 subcl 9605 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
323adant1 1001 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
4 simp3 985 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
51, 3, 4addassd 9404 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  ( B  -  C ) )  +  C )  =  ( A  +  ( ( B  -  C )  +  C
) ) )
6 npcan 9615 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  +  C
)  =  B )
763adant1 1001 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  C )  =  B )
87oveq2d 6106 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( ( B  -  C )  +  C ) )  =  ( A  +  B
) )
95, 8eqtrd 2473 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  ( B  -  C ) )  +  C )  =  ( A  +  B ) )
109oveq1d 6105 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  +  ( B  -  C
) )  +  C
)  -  C )  =  ( ( A  +  B )  -  C ) )
111, 3addcld 9401 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  -  C ) )  e.  CC )
12 pncan 9612 . . 3  |-  ( ( ( A  +  ( B  -  C ) )  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  +  ( B  -  C ) )  +  C )  -  C
)  =  ( A  +  ( B  -  C ) ) )
1311, 4, 12syl2anc 656 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  +  ( B  -  C
) )  +  C
)  -  C )  =  ( A  +  ( B  -  C
) ) )
1410, 13eqtr3d 2475 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( A  +  ( B  -  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 960    = wceq 1364    e. wcel 1761  (class class class)co 6090   CCcc 9276    + caddc 9281    - cmin 9591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-po 4637  df-so 4638  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-ltxr 9419  df-sub 9593
This theorem is referenced by:  addsub  9617  subadd23  9618  addsubeq4  9621  npncan  9626  subsub  9635  subsub3  9637  addsub4  9648  negsub  9653  addsubassi  9695  addsubassd  9735  zeo  10723  fzen2  11787  odd2np1  13588  chtub  22510  axcontlem2  23146  fsumcube  28132  stoweidlem26  29746  numclwwlkovf2ex  30604  numclwlk2lem2f  30621
  Copyright terms: Public domain W3C validator