MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsub4 Structured version   Unicode version

Theorem addsub4 9874
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.)
Assertion
Ref Expression
addsub4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  -  ( C  +  D )
)  =  ( ( A  -  C )  +  ( B  -  D ) ) )

Proof of Theorem addsub4
StepHypRef Expression
1 simpll 753 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
2 simplr 754 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
3 simprl 755 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
4 addsub 9843 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( ( A  -  C )  +  B ) )
51, 2, 3, 4syl3anc 1228 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  -  C
)  =  ( ( A  -  C )  +  B ) )
65oveq1d 6310 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  +  B )  -  C )  -  D
)  =  ( ( ( A  -  C
)  +  B )  -  D ) )
71, 2addcld 9627 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  B
)  e.  CC )
8 simprr 756 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  D  e.  CC )
9 subsub4 9864 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC  /\  D  e.  CC )  ->  (
( ( A  +  B )  -  C
)  -  D )  =  ( ( A  +  B )  -  ( C  +  D
) ) )
107, 3, 8, 9syl3anc 1228 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  +  B )  -  C )  -  D
)  =  ( ( A  +  B )  -  ( C  +  D ) ) )
11 subcl 9831 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  -  C
)  e.  CC )
1211ad2ant2r 746 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  -  C
)  e.  CC )
13 addsubass 9842 . . 3  |-  ( ( ( A  -  C
)  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
( ( A  -  C )  +  B
)  -  D )  =  ( ( A  -  C )  +  ( B  -  D
) ) )
1412, 2, 8, 13syl3anc 1228 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  -  C )  +  B )  -  D
)  =  ( ( A  -  C )  +  ( B  -  D ) ) )
156, 10, 143eqtr3d 2516 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  -  ( C  +  D )
)  =  ( ( A  -  C )  +  ( B  -  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6295   CCcc 9502    + caddc 9507    - cmin 9817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-ltxr 9645  df-sub 9819
This theorem is referenced by:  subadd4  9875  addsub4i  9927  addsub4d  9989  zaddcl  10915  sersub  12130  ppiub  23345  pntibndlem2  23642  ftc1anclem6  30022
  Copyright terms: Public domain W3C validator