MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addresr Structured version   Unicode version

Theorem addresr 9297
Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addresr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )

Proof of Theorem addresr
StepHypRef Expression
1 0r 9239 . . 3  |-  0R  e.  R.
2 addcnsr 9294 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  e.  R. )  /\  ( B  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  ( 0R  +R  0R )
>. )
32an4s 822 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( 0R  e.  R.  /\  0R  e.  R. )
)  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  ( 0R  +R  0R )
>. )
41, 1, 3mpanr12 685 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  ( 0R  +R  0R ) >. )
5 0idsr 9256 . . . 4  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
61, 5ax-mp 5 . . 3  |-  ( 0R 
+R  0R )  =  0R
76opeq2i 4058 . 2  |-  <. ( A  +R  B ) ,  ( 0R  +R  0R ) >.  =  <. ( A  +R  B ) ,  0R >.
84, 7syl6eq 2486 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   <.cop 3878  (class class class)co 6086   R.cnr 9026   0Rc0r 9027    +R cplr 9030    + caddc 9277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-omul 6917  df-er 7093  df-ec 7095  df-qs 7099  df-ni 9033  df-pli 9034  df-mi 9035  df-lti 9036  df-plpq 9069  df-mpq 9070  df-ltpq 9071  df-enq 9072  df-nq 9073  df-erq 9074  df-plq 9075  df-mq 9076  df-1nq 9077  df-rq 9078  df-ltnq 9079  df-np 9142  df-1p 9143  df-plp 9144  df-ltp 9146  df-plpr 9216  df-enr 9218  df-nr 9219  df-plr 9220  df-0r 9223  df-c 9280  df-add 9285
This theorem is referenced by:  axaddrcl  9311  axi2m1  9318  axrnegex  9321  axpre-ltadd  9326
  Copyright terms: Public domain W3C validator