MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqnq Structured version   Unicode version

Theorem addpqnq 9221
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addpqnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( /Q
`  ( A  +pQ  B ) ) )

Proof of Theorem addpqnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plq 9197 . . . . 5  |-  +Q  =  ( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) )
21fveq1i 5803 . . . 4  |-  (  +Q 
`  <. A ,  B >. )  =  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
32a1i 11 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  +Q  `  <. A ,  B >. )  =  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )
)
4 opelxpi 4982 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( Q.  X.  Q. ) )
5 fvres 5816 . . . 4  |-  ( <. A ,  B >.  e.  ( Q.  X.  Q. )  ->  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `  <. A ,  B >. )  =  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. ) )
64, 5syl 16 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) `
 <. A ,  B >. )  =  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. ) )
7 df-plpq 9191 . . . . 5  |-  +pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N. 
X.  N. )  |->  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
8 opex 4667 . . . . 5  |-  <. (
( ( 1st `  x
)  .N  ( 2nd `  y ) )  +N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>.  e.  _V
97, 8fnmpt2i 6756 . . . 4  |-  +pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )
10 elpqn 9208 . . . . 5  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
11 elpqn 9208 . . . . 5  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
12 opelxpi 4982 . . . . 5  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
1310, 11, 12syl2an 477 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  -> 
<. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
14 fvco2 5878 . . . 4  |-  ( ( 
+pQ  Fn  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  /\  <. A ,  B >.  e.  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  +pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) ) )
159, 13, 14sylancr 663 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( ( /Q  o.  +pQ  ) `  <. A ,  B >. )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) ) )
163, 6, 153eqtrd 2499 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  (  +Q  `  <. A ,  B >. )  =  ( /Q `  (  +pQ  `  <. A ,  B >. ) ) )
17 df-ov 6206 . 2  |-  ( A  +Q  B )  =  (  +Q  `  <. A ,  B >. )
18 df-ov 6206 . . 3  |-  ( A 
+pQ  B )  =  (  +pQ  `  <. A ,  B >. )
1918fveq2i 5805 . 2  |-  ( /Q
`  ( A  +pQ  B ) )  =  ( /Q `  (  +pQ  ` 
<. A ,  B >. ) )
2016, 17, 193eqtr4g 2520 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( /Q
`  ( A  +pQ  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   <.cop 3994    X. cxp 4949    |` cres 4953    o. ccom 4955    Fn wfn 5524   ` cfv 5529  (class class class)co 6203   1stc1st 6688   2ndc2nd 6689   N.cnpi 9125    +N cpli 9126    .N cmi 9127    +pQ cplpq 9129   Q.cnq 9133   /Qcerq 9135    +Q cplq 9136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-plpq 9191  df-nq 9195  df-plq 9197
This theorem is referenced by:  addclnq  9228  addcomnq  9234  adderpq  9239  addassnq  9241  distrnq  9244  ltanq  9254  1lt2nq  9256  prlem934  9316
  Copyright terms: Public domain W3C validator