MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnqf Structured version   Unicode version

Theorem addnqf 9116
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addnqf  |-  +Q  :
( Q.  X.  Q. )
--> Q.

Proof of Theorem addnqf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nqerf 9098 . . . 4  |-  /Q :
( N.  X.  N. )
--> Q.
2 addpqf 9112 . . . 4  |-  +pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3 fco 5567 . . . 4  |-  ( ( /Q : ( N. 
X.  N. ) --> Q.  /\  +pQ 
: ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. ) )  ->  ( /Q  o.  +pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q. )
41, 2, 3mp2an 672 . . 3  |-  ( /Q  o.  +pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q.
5 elpqn 9093 . . . . 5  |-  ( x  e.  Q.  ->  x  e.  ( N.  X.  N. ) )
65ssriv 3359 . . . 4  |-  Q.  C_  ( N.  X.  N. )
7 xpss12 4944 . . . 4  |-  ( ( Q.  C_  ( N.  X.  N. )  /\  Q.  C_  ( N.  X.  N. ) )  ->  ( Q.  X.  Q. )  C_  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
86, 6, 7mp2an 672 . . 3  |-  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
9 fssres 5577 . . 3  |-  ( ( ( /Q  o.  +pQ  ) : ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> Q.  /\  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) ) : ( Q.  X.  Q. )
--> Q. )
104, 8, 9mp2an 672 . 2  |-  ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q.
11 df-plq 9082 . . 3  |-  +Q  =  ( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) )
1211feq1i 5550 . 2  |-  (  +Q  : ( Q.  X.  Q. ) --> Q.  <->  ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q. )
1310, 12mpbir 209 1  |-  +Q  :
( Q.  X.  Q. )
--> Q.
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3327    X. cxp 4837    |` cres 4841    o. ccom 4843   -->wf 5413   N.cnpi 9010    +pQ cplpq 9014   Q.cnq 9018   /Qcerq 9020    +Q cplq 9021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-omul 6924  df-er 7100  df-ni 9040  df-pli 9041  df-mi 9042  df-lti 9043  df-plpq 9076  df-enq 9079  df-nq 9080  df-erq 9081  df-plq 9082  df-1nq 9084
This theorem is referenced by:  addcomnq  9119  adderpq  9124  addassnq  9126  distrnq  9129  ltanq  9139  ltexnq  9143  nsmallnq  9145  ltbtwnnq  9146  prlem934  9201  ltaddpr  9202  ltexprlem2  9205  ltexprlem3  9206  ltexprlem4  9207  ltexprlem6  9209  ltexprlem7  9210  prlem936  9215
  Copyright terms: Public domain W3C validator