MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnqf Structured version   Unicode version

Theorem addnqf 9338
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addnqf  |-  +Q  :
( Q.  X.  Q. )
--> Q.

Proof of Theorem addnqf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nqerf 9320 . . . 4  |-  /Q :
( N.  X.  N. )
--> Q.
2 addpqf 9334 . . . 4  |-  +pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3 fco 5747 . . . 4  |-  ( ( /Q : ( N. 
X.  N. ) --> Q.  /\  +pQ 
: ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. ) )  ->  ( /Q  o.  +pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q. )
41, 2, 3mp2an 672 . . 3  |-  ( /Q  o.  +pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q.
5 elpqn 9315 . . . . 5  |-  ( x  e.  Q.  ->  x  e.  ( N.  X.  N. ) )
65ssriv 3513 . . . 4  |-  Q.  C_  ( N.  X.  N. )
7 xpss12 5114 . . . 4  |-  ( ( Q.  C_  ( N.  X.  N. )  /\  Q.  C_  ( N.  X.  N. ) )  ->  ( Q.  X.  Q. )  C_  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
86, 6, 7mp2an 672 . . 3  |-  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
9 fssres 5757 . . 3  |-  ( ( ( /Q  o.  +pQ  ) : ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> Q.  /\  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) ) : ( Q.  X.  Q. )
--> Q. )
104, 8, 9mp2an 672 . 2  |-  ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q.
11 df-plq 9304 . . 3  |-  +Q  =  ( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) )
1211feq1i 5729 . 2  |-  (  +Q  : ( Q.  X.  Q. ) --> Q.  <->  ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q. )
1310, 12mpbir 209 1  |-  +Q  :
( Q.  X.  Q. )
--> Q.
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3481    X. cxp 5003    |` cres 5007    o. ccom 5009   -->wf 5590   N.cnpi 9234    +pQ cplpq 9238   Q.cnq 9242   /Qcerq 9244    +Q cplq 9245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-omul 7147  df-er 7323  df-ni 9262  df-pli 9263  df-mi 9264  df-lti 9265  df-plpq 9298  df-enq 9301  df-nq 9302  df-erq 9303  df-plq 9304  df-1nq 9306
This theorem is referenced by:  addcomnq  9341  adderpq  9346  addassnq  9348  distrnq  9351  ltanq  9361  ltexnq  9365  nsmallnq  9367  ltbtwnnq  9368  prlem934  9423  ltaddpr  9424  ltexprlem2  9427  ltexprlem3  9428  ltexprlem4  9429  ltexprlem6  9431  ltexprlem7  9432  prlem936  9437
  Copyright terms: Public domain W3C validator