MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnidpi Structured version   Unicode version

Theorem addnidpi 9229
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addnidpi  |-  ( A  e.  N.  ->  -.  ( A  +N  B
)  =  A )

Proof of Theorem addnidpi
StepHypRef Expression
1 pinn 9206 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
2 elni2 9205 . . . . . 6  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
3 nnaordi 7224 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  ( A  +o  (/) )  e.  ( A  +o  B
) ) )
4 nna0 7210 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
54eleq1d 2471 . . . . . . . . . . 11  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  <->  A  e.  ( A  +o  B ) ) )
6 nnord 6646 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  Ord  A )
7 ordirr 4839 . . . . . . . . . . . . . 14  |-  ( Ord 
A  ->  -.  A  e.  A )
86, 7syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  -.  A  e.  A )
9 eleq2 2475 . . . . . . . . . . . . . 14  |-  ( ( A  +o  B )  =  A  ->  ( A  e.  ( A  +o  B )  <->  A  e.  A ) )
109notbid 292 . . . . . . . . . . . . 13  |-  ( ( A  +o  B )  =  A  ->  ( -.  A  e.  ( A  +o  B )  <->  -.  A  e.  A ) )
118, 10syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  (
( A  +o  B
)  =  A  ->  -.  A  e.  ( A  +o  B ) ) )
1211con2d 115 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( A  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
135, 12sylbid 215 . . . . . . . . . 10  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  ->  -.  ( A  +o  B )  =  A ) )
1413adantl 464 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
153, 14syld 42 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  -.  ( A  +o  B )  =  A ) )
1615expcom 433 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  (
(/)  e.  B  ->  -.  ( A  +o  B
)  =  A ) ) )
1716imp32 431 . . . . . 6  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  (/)  e.  B ) )  ->  -.  ( A  +o  B )  =  A )
182, 17sylan2b 473 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
191, 18sylan 469 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
20 addpiord 9212 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
2120eqeq1d 2404 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  <-> 
( A  +o  B
)  =  A ) )
2219, 21mtbird 299 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )
2322a1d 25 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  e.  N.  ->  -.  ( A  +N  B )  =  A ) )
24 dmaddpi 9218 . . . . . 6  |-  dom  +N  =  ( N.  X.  N. )
2524ndmov 6396 . . . . 5  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  (/) )
2625eqeq1d 2404 . . . 4  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  <->  (/)  =  A ) )
27 0npi 9210 . . . . 5  |-  -.  (/)  e.  N.
28 eleq1 2474 . . . . 5  |-  ( (/)  =  A  ->  ( (/)  e.  N.  <->  A  e.  N. ) )
2927, 28mtbii 300 . . . 4  |-  ( (/)  =  A  ->  -.  A  e.  N. )
3026, 29syl6bi 228 . . 3  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  ->  -.  A  e.  N. ) )
3130con2d 115 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( A  e.  N.  ->  -.  ( A  +N  B )  =  A ) )
3223, 31pm2.61i 164 1  |-  ( A  e.  N.  ->  -.  ( A  +N  B
)  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   (/)c0 3737   Ord word 4820  (class class class)co 6234   omcom 6638    +o coa 7084   N.cnpi 9172    +N cpli 9173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-1st 6738  df-2nd 6739  df-recs 6999  df-rdg 7033  df-oadd 7091  df-ni 9200  df-pli 9201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator