MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addmodid Structured version   Unicode version

Theorem addmodid 11760
Description: The sum of a real number modulo a positive real number and another real number equals the sum of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 30-Oct-2018.)
Assertion
Ref Expression
addmodid  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  A )

Proof of Theorem addmodid
StepHypRef Expression
1 nnrp 11012 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR+ )
2 modid0 11745 . . . . . . 7  |-  ( M  e.  RR+  ->  ( M  mod  M )  =  0 )
31, 2syl 16 . . . . . 6  |-  ( M  e.  NN  ->  ( M  mod  M )  =  0 )
433ad2ant2 1010 . . . . 5  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( M  mod  M )  =  0 )
54oveq1d 6118 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  mod  M
)  +  A )  =  ( 0  +  A ) )
6 nn0cn 10601 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  CC )
76addid2d 9582 . . . . 5  |-  ( A  e.  NN0  ->  ( 0  +  A )  =  A )
873ad2ant1 1009 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
0  +  A )  =  A )
95, 8eqtrd 2475 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  mod  M
)  +  A )  =  A )
109oveq1d 6118 . 2  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( ( M  mod  M )  +  A )  mod  M )  =  ( A  mod  M
) )
11 nnre 10341 . . . 4  |-  ( M  e.  NN  ->  M  e.  RR )
12113ad2ant2 1010 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  RR )
13 nn0re 10600 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
14133ad2ant1 1009 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  e.  RR )
1513ad2ant2 1010 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  M  e.  RR+ )
16 modaddmod 11759 . . 3  |-  ( ( M  e.  RR  /\  A  e.  RR  /\  M  e.  RR+ )  ->  (
( ( M  mod  M )  +  A )  mod  M )  =  ( ( M  +  A )  mod  M
) )
1712, 14, 15, 16syl3anc 1218 . 2  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( ( M  mod  M )  +  A )  mod  M )  =  ( ( M  +  A )  mod  M
) )
1813, 1anim12i 566 . . . 4  |-  ( ( A  e.  NN0  /\  M  e.  NN )  ->  ( A  e.  RR  /\  M  e.  RR+ )
)
19183adant3 1008 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( A  e.  RR  /\  M  e.  RR+ ) )
20 nn0ge0 10617 . . . 4  |-  ( A  e.  NN0  ->  0  <_  A )
21203ad2ant1 1009 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  0  <_  A )
22 simp3 990 . . 3  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  A  <  M )
23 modid 11744 . . 3  |-  ( ( ( A  e.  RR  /\  M  e.  RR+ )  /\  ( 0  <_  A  /\  A  <  M ) )  ->  ( A  mod  M )  =  A )
2419, 21, 22, 23syl12anc 1216 . 2  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  ( A  mod  M )  =  A )
2510, 17, 243eqtr3d 2483 1  |-  ( ( A  e.  NN0  /\  M  e.  NN  /\  A  <  M )  ->  (
( M  +  A
)  mod  M )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4304  (class class class)co 6103   RRcr 9293   0cc0 9294    + caddc 9297    < clt 9430    <_ cle 9431   NNcn 10334   NN0cn0 10591   RR+crp 11003    mod cmo 11720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-fl 11654  df-mod 11721
This theorem is referenced by:  cshwidxn  12457
  Copyright terms: Public domain W3C validator