MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid2 Unicode version

Theorem addid2 9205
Description:  0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addid2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )

Proof of Theorem addid2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnegex 9203 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
2 cnegex 9203 . . . 4  |-  ( x  e.  CC  ->  E. y  e.  CC  ( x  +  y )  =  0 )
32ad2antrl 709 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  E. y  e.  CC  ( x  +  y )  =  0 )
4 0cn 9040 . . . . . . . . . 10  |-  0  e.  CC
5 addass 9033 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  0  e.  CC  /\  y  e.  CC )  ->  (
( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
64, 4, 5mp3an12 1269 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
76adantr 452 . . . . . . . 8  |-  ( ( y  e.  CC  /\  ( x  +  y
)  =  0 )  ->  ( ( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
873ad2ant3 980 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
9 00id 9197 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
109oveq1i 6050 . . . . . . . 8  |-  ( ( 0  +  0 )  +  y )  =  ( 0  +  y )
11 simp1 957 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  ->  A  e.  CC )
12 simp2l 983 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  ->  x  e.  CC )
13 simp3l 985 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
y  e.  CC )
1411, 12, 13addassd 9066 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( A  +  x )  +  y )  =  ( A  +  ( x  +  y ) ) )
15 simp2r 984 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  x
)  =  0 )
1615oveq1d 6055 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( A  +  x )  +  y )  =  ( 0  +  y ) )
17 simp3r 986 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( x  +  y )  =  0 )
1817oveq2d 6056 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  ( x  +  y ) )  =  ( A  +  0 ) )
1914, 16, 183eqtr3rd 2445 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  0 )  =  ( 0  +  y ) )
20 addid1 9202 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
21203ad2ant1 978 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  0 )  =  A )
2219, 21eqtr3d 2438 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( 0  +  y )  =  A )
2310, 22syl5eq 2448 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( 0  +  0 )  +  y )  =  A )
2422oveq2d 6056 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( 0  +  ( 0  +  y ) )  =  ( 0  +  A ) )
258, 23, 243eqtr3rd 2445 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( 0  +  A
)  =  A )
26253expia 1155 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( (
y  e.  CC  /\  ( x  +  y
)  =  0 )  ->  ( 0  +  A )  =  A ) )
2726exp3a 426 . . . 4  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( y  e.  CC  ->  ( (
x  +  y )  =  0  ->  (
0  +  A )  =  A ) ) )
2827rexlimdv 2789 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( E. y  e.  CC  (
x  +  y )  =  0  ->  (
0  +  A )  =  A ) )
293, 28mpd 15 . 2  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( 0  +  A )  =  A )
301, 29rexlimddv 2794 1  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   E.wrex 2667  (class class class)co 6040   CCcc 8944   0cc0 8946    + caddc 8949
This theorem is referenced by:  addcan  9206  addid2i  9210  addid2d  9223  negneg  9307  uzindOLD  10320  fzoaddel2  11131  modid  11225  swrds1  11742  isercolllem3  12415  sumrblem  12460  summolem2a  12464  fsum0diag2  12521  eftlub  12665  gcdid  12986  cnaddablx  15436  cnaddabl  15437  cncrng  16677  ptolemy  20357  logtayl  20504  leibpilem2  20734  usgraexvlem  21367  cnaddablo  21891  cnid  21892  axcontlem2  25808  swrd0swrdid  28012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081
  Copyright terms: Public domain W3C validator