MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid2 Structured version   Unicode version

Theorem addid2 9774
Description:  0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addid2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )

Proof of Theorem addid2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnegex 9772 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
2 cnegex 9772 . . . 4  |-  ( x  e.  CC  ->  E. y  e.  CC  ( x  +  y )  =  0 )
32ad2antrl 727 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  E. y  e.  CC  ( x  +  y )  =  0 )
4 0cn 9600 . . . . . . . . . 10  |-  0  e.  CC
5 addass 9591 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  0  e.  CC  /\  y  e.  CC )  ->  (
( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
64, 4, 5mp3an12 1314 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
76adantr 465 . . . . . . . 8  |-  ( ( y  e.  CC  /\  ( x  +  y
)  =  0 )  ->  ( ( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
873ad2ant3 1019 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( 0  +  0 )  +  y )  =  ( 0  +  ( 0  +  y ) ) )
9 00id 9766 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
109oveq1i 6305 . . . . . . . 8  |-  ( ( 0  +  0 )  +  y )  =  ( 0  +  y )
11 simp1 996 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  ->  A  e.  CC )
12 simp2l 1022 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  ->  x  e.  CC )
13 simp3l 1024 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
y  e.  CC )
1411, 12, 13addassd 9630 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( A  +  x )  +  y )  =  ( A  +  ( x  +  y ) ) )
15 simp2r 1023 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  x
)  =  0 )
1615oveq1d 6310 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( A  +  x )  +  y )  =  ( 0  +  y ) )
17 simp3r 1025 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( x  +  y )  =  0 )
1817oveq2d 6311 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  ( x  +  y ) )  =  ( A  +  0 ) )
1914, 16, 183eqtr3rd 2517 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  0 )  =  ( 0  +  y ) )
20 addid1 9771 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
21203ad2ant1 1017 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( A  +  0 )  =  A )
2219, 21eqtr3d 2510 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( 0  +  y )  =  A )
2310, 22syl5eq 2520 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( ( 0  +  0 )  +  y )  =  A )
2422oveq2d 6311 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( 0  +  ( 0  +  y ) )  =  ( 0  +  A ) )
258, 23, 243eqtr3rd 2517 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 )  /\  ( y  e.  CC  /\  ( x  +  y )  =  0 ) )  -> 
( 0  +  A
)  =  A )
26253expia 1198 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( (
y  e.  CC  /\  ( x  +  y
)  =  0 )  ->  ( 0  +  A )  =  A ) )
2726expd 436 . . . 4  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( y  e.  CC  ->  ( (
x  +  y )  =  0  ->  (
0  +  A )  =  A ) ) )
2827rexlimdv 2957 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( E. y  e.  CC  (
x  +  y )  =  0  ->  (
0  +  A )  =  A ) )
293, 28mpd 15 . 2  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  ( A  +  x
)  =  0 ) )  ->  ( 0  +  A )  =  A )
301, 29rexlimddv 2963 1  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2818  (class class class)co 6295   CCcc 9502   0cc0 9504    + caddc 9507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-ltxr 9645
This theorem is referenced by:  addcan  9775  addid2i  9779  addid2d  9792  negneg  9881  uzindOLD  10967  fzoaddel2  11854  modid  12000  swrds1  12656  isercolllem3  13469  sumrblem  13513  summolem2a  13517  fsum0diag2  13578  eftlub  13722  gcdid  14045  cnaddablx  16747  cnaddabl  16748  cncrng  18309  ptolemy  22755  logtayl  22907  leibpilem2  23138  axcontlem2  24082  usgraexvlem  24209  cnaddablo  25166  cnid  25167  dvcosax  31570  2zrngamnd  32314
  Copyright terms: Public domain W3C validator