MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid1 Structured version   Unicode version

Theorem addid1 9547
Description:  0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addid1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )

Proof of Theorem addid1
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 9383 . 2  |-  1  e.  RR
2 ax-rnegex 9351 . 2  |-  ( 1  e.  RR  ->  E. c  e.  RR  ( 1  +  c )  =  0 )
3 ax-1ne0 9349 . . . . . 6  |-  1  =/=  0
4 oveq2 6097 . . . . . . . . . 10  |-  ( c  =  0  ->  (
1  +  c )  =  ( 1  +  0 ) )
54eqeq1d 2449 . . . . . . . . 9  |-  ( c  =  0  ->  (
( 1  +  c )  =  0  <->  (
1  +  0 )  =  0 ) )
65biimpcd 224 . . . . . . . 8  |-  ( ( 1  +  c )  =  0  ->  (
c  =  0  -> 
( 1  +  0 )  =  0 ) )
7 oveq2 6097 . . . . . . . . 9  |-  ( ( 1  +  0 )  =  0  ->  (
( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )
8 ax-icn 9339 . . . . . . . . . . . . . . 15  |-  _i  e.  CC
98, 8mulcli 9389 . . . . . . . . . . . . . 14  |-  ( _i  x.  _i )  e.  CC
109, 9mulcli 9389 . . . . . . . . . . . . 13  |-  ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  e.  CC
11 ax-1cn 9338 . . . . . . . . . . . . 13  |-  1  e.  CC
12 0cn 9376 . . . . . . . . . . . . 13  |-  0  e.  CC
1310, 11, 12adddii 9394 . . . . . . . . . . . 12  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  ( 1  +  0 ) )  =  ( ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  1 )  +  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )
1410mulid1i 9386 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  1 )  =  ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )
15 mul01 9546 . . . . . . . . . . . . . . 15  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  e.  CC  ->  ( (
( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  0 )
1610, 15ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  0
17 ax-i2m1 9348 . . . . . . . . . . . . . 14  |-  ( ( _i  x.  _i )  +  1 )  =  0
1816, 17eqtr4i 2464 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  =  ( ( _i  x.  _i )  +  1 )
1914, 18oveq12i 6101 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  1 )  +  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 ) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )
2013, 19eqtri 2461 . . . . . . . . . . 11  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )
2120, 16eqeq12i 2454 . . . . . . . . . 10  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  <->  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1 ) )  =  0 )
2210, 9, 11addassi 9392 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )  +  1 )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1 ) )
239mulid1i 9386 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  1 )  =  ( _i  x.  _i )
2423oveq2i 6100 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1
) )  =  ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )
259, 9, 11adddii 9394 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1 ) )
2617oveq2i 6100 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  ( ( _i  x.  _i )  x.  0
)
27 mul01 9546 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  x.  _i )  e.  CC  ->  (
( _i  x.  _i )  x.  0 )  =  0 )
289, 27ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  x.  0 )  =  0
2926, 28eqtri 2461 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( _i  x.  _i )  +  1 ) )  =  0
3025, 29eqtr3i 2463 . . . . . . . . . . . . . 14  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  x.  1
) )  =  0
3124, 30eqtr3i 2463 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( _i  x.  _i ) )  =  0
3231oveq1i 6099 . . . . . . . . . . . 12  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( _i  x.  _i ) )  +  1 )  =  ( 0  +  1 )
3322, 32eqtr3i 2463 . . . . . . . . . . 11  |-  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  +  ( ( _i  x.  _i )  +  1
) )  =  ( 0  +  1 )
34 00id 9542 . . . . . . . . . . . 12  |-  ( 0  +  0 )  =  0
3534eqcomi 2445 . . . . . . . . . . 11  |-  0  =  ( 0  +  0 )
3633, 35eqeq12i 2454 . . . . . . . . . 10  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  +  ( ( _i  x.  _i )  +  1 ) )  =  0  <->  ( 0  +  1 )  =  ( 0  +  0 ) )
37 0re 9384 . . . . . . . . . . 11  |-  0  e.  RR
38 readdcan 9541 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  0  e.  RR  /\  0  e.  RR )  ->  (
( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 ) )
391, 37, 37, 38mp3an 1314 . . . . . . . . . 10  |-  ( ( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 )
4021, 36, 393bitri 271 . . . . . . . . 9  |-  ( ( ( ( _i  x.  _i )  x.  (
_i  x.  _i )
)  x.  ( 1  +  0 ) )  =  ( ( ( _i  x.  _i )  x.  ( _i  x.  _i ) )  x.  0 )  <->  1  =  0 )
417, 40sylib 196 . . . . . . . 8  |-  ( ( 1  +  0 )  =  0  ->  1  =  0 )
426, 41syl6 33 . . . . . . 7  |-  ( ( 1  +  c )  =  0  ->  (
c  =  0  -> 
1  =  0 ) )
4342necon3d 2644 . . . . . 6  |-  ( ( 1  +  c )  =  0  ->  (
1  =/=  0  -> 
c  =/=  0 ) )
443, 43mpi 17 . . . . 5  |-  ( ( 1  +  c )  =  0  ->  c  =/=  0 )
45 ax-rrecex 9352 . . . . 5  |-  ( ( c  e.  RR  /\  c  =/=  0 )  ->  E. x  e.  RR  ( c  x.  x
)  =  1 )
4644, 45sylan2 474 . . . 4  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  E. x  e.  RR  ( c  x.  x
)  =  1 )
47 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  A  e.  CC )
48 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  x  e.  RR )
4948recnd 9410 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  x  e.  CC )
5047, 49mulcld 9404 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  ( A  x.  x )  e.  CC )
51 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  c  e.  RR )
5251recnd 9410 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  c  e.  CC )
5312a1i 11 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  0  e.  CC )
5450, 52, 53adddid 9408 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  ( c  +  0 ) )  =  ( ( ( A  x.  x )  x.  c )  +  ( ( A  x.  x )  x.  0 ) ) )
5511a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  1  e.  CC )
5655, 52, 53addassd 9406 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  c )  +  0 )  =  ( 1  +  ( c  +  0 ) ) )
57 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  c )  =  0 )
5857oveq1d 6104 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  c )  +  0 )  =  ( 0  +  0 ) )
5956, 58eqtr3d 2475 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  ( c  +  0 ) )  =  ( 0  +  0 ) )
6034, 59, 573eqtr4a 2499 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  +  ( c  +  0 ) )  =  ( 1  +  c ) )
6137a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  0  e.  RR )
6251, 61readdcld 9411 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  +  0 )  e.  RR )
631a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  1  e.  RR )
64 readdcan 9541 . . . . . . . . . . 11  |-  ( ( ( c  +  0 )  e.  RR  /\  c  e.  RR  /\  1  e.  RR )  ->  (
( 1  +  ( c  +  0 ) )  =  ( 1  +  c )  <->  ( c  +  0 )  =  c ) )
6562, 51, 63, 64syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( 1  +  ( c  +  0 ) )  =  ( 1  +  c )  <->  ( c  +  0 )  =  c ) )
6660, 65mpbid 210 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  +  0 )  =  c )
6766oveq2d 6105 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  ( c  +  0 ) )  =  ( ( A  x.  x )  x.  c ) )
6854, 67eqtr3d 2475 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( ( A  x.  x )  x.  c
)  +  ( ( A  x.  x )  x.  0 ) )  =  ( ( A  x.  x )  x.  c ) )
69 mul31 9535 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  c  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  ( ( c  x.  x )  x.  A ) )
7047, 49, 52, 69syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  ( ( c  x.  x )  x.  A ) )
71 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
c  x.  x )  =  1 )
7271oveq1d 6104 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( c  x.  x
)  x.  A )  =  ( 1  x.  A ) )
7347mulid2d 9402 . . . . . . . . 9  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
1  x.  A )  =  A )
7470, 72, 733eqtrd 2477 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  c )  =  A )
75 mul01 9546 . . . . . . . . 9  |-  ( ( A  x.  x )  e.  CC  ->  (
( A  x.  x
)  x.  0 )  =  0 )
7650, 75syl 16 . . . . . . . 8  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( A  x.  x
)  x.  0 )  =  0 )
7774, 76oveq12d 6107 . . . . . . 7  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  (
( ( A  x.  x )  x.  c
)  +  ( ( A  x.  x )  x.  0 ) )  =  ( A  + 
0 ) )
7868, 77, 743eqtr3d 2481 . . . . . 6  |-  ( ( ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  /\  (
x  e.  RR  /\  ( c  x.  x
)  =  1 ) )  /\  A  e.  CC )  ->  ( A  +  0 )  =  A )
7978exp42 611 . . . . 5  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( x  e.  RR  ->  ( (
c  x.  x )  =  1  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) ) ) )
8079rexlimdv 2838 . . . 4  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( E. x  e.  RR  ( c  x.  x )  =  1  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) ) )
8146, 80mpd 15 . . 3  |-  ( ( c  e.  RR  /\  ( 1  +  c )  =  0 )  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) )
8281rexlimiva 2834 . 2  |-  ( E. c  e.  RR  (
1  +  c )  =  0  ->  ( A  e.  CC  ->  ( A  +  0 )  =  A ) )
831, 2, 82mp2b 10 1  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2604   E.wrex 2714  (class class class)co 6089   CCcc 9278   RRcr 9279   0cc0 9280   1c1 9281   _ici 9282    + caddc 9283    x. cmul 9285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-po 4639  df-so 4640  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-ov 6092  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-pnf 9418  df-mnf 9419  df-ltxr 9421
This theorem is referenced by:  cnegex  9548  addid2  9550  addcan2  9552  addid1i  9554  addid1d  9567  subid  9626  subid1  9627  swrdccat3blem  12384  shftval3  12563  reim0  12605  isercolllem3  13142  fsumcvg  13187  summolem2a  13190  ovolicc1  20997  brbtwn2  23149  axsegconlem1  23161  ax5seglem4  23176  axeuclid  23207  axcontlem2  23209  axcontlem4  23211  relexpadd  27338  risefac1  27534  stoweidlem26  29818
  Copyright terms: Public domain W3C validator