MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addgegt0d Structured version   Unicode version

Theorem addgegt0d 10127
Description: Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
addgegt0d.3  |-  ( ph  ->  0  <_  A )
addgegt0d.4  |-  ( ph  ->  0  <  B )
Assertion
Ref Expression
addgegt0d  |-  ( ph  ->  0  <  ( A  +  B ) )

Proof of Theorem addgegt0d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 addgegt0d.3 . 2  |-  ( ph  ->  0  <_  A )
4 addgegt0d.4 . 2  |-  ( ph  ->  0  <  B )
5 addgegt0 10040 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <  B
) )  ->  0  <  ( A  +  B
) )
61, 2, 3, 4, 5syl22anc 1228 1  |-  ( ph  ->  0  <  ( A  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1802   class class class wbr 4433  (class class class)co 6277   RRcr 9489   0cc0 9490    + caddc 9493    < clt 9626    <_ cle 9627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-po 4786  df-so 4787  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-ov 6280  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632
This theorem is referenced by:  addgt0d  10128  nn0p1gt0  10826  cshwshashlem2  14453  wwlkextwrd  24593  wwlkextfun  24594  wwlkextinj  24595  minvecolem5  25662  stirlinglem5  31745  stirlinglem7  31747  fourierdlem79  31853  fouriersw  31899
  Copyright terms: Public domain W3C validator