MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge0d Structured version   Unicode version

Theorem addge0d 10129
Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
addge0d.3  |-  ( ph  ->  0  <_  A )
addge0d.4  |-  ( ph  ->  0  <_  B )
Assertion
Ref Expression
addge0d  |-  ( ph  ->  0  <_  ( A  +  B ) )

Proof of Theorem addge0d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 addge0d.3 . 2  |-  ( ph  ->  0  <_  A )
4 addge0d.4 . 2  |-  ( ph  ->  0  <_  B )
5 addge0 10042 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  0  <_  B
) )  ->  0  <_  ( A  +  B
) )
61, 2, 3, 4, 5syl22anc 1229 1  |-  ( ph  ->  0  <_  ( A  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767   class class class wbr 4447  (class class class)co 6285   RRcr 9492   0cc0 9493    + caddc 9496    <_ cle 9630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635
This theorem is referenced by:  fldiv  11956  modaddmodlo  12020  cjmulge0  12945  absrele  13107  abstri  13129  prdsxmetlem  20698  nmotri  21073  tchcphlem1  21505  trirn  21654  minveclem4  21674  ibladdlem  22053  itgaddlem1  22056  itgaddlem2  22057  iblabs  22062  cxpaddle  22951  asinlem3a  23026  fsumharmonic  23166  mulog2sumlem2  23545  selbergb  23559  selberg2b  23562  pntrlog2bndlem2  23588  pntrlog2bnd  23594  abvcxp  23625  smcnlem  25380  minvecolem4  25569  fsumrp0cl  27444  sqsscirc1  27641  lgamgulmlem3  28324  itg2addnc  29922  ibladdnclem  29924  itgaddnclem1  29926  itgaddnclem2  29927  iblabsnc  29932  iblmulc2nc  29933  ftc1anclem4  29946  ftc1anclem7  29949  ftc1anc  29951  areacirc  29965  rmxypos  30716  wallispi2lem1  31598  fourierdlem15  31649  fourierdlem30  31664  fourierdlem47  31681
  Copyright terms: Public domain W3C validator