MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge01 Structured version   Unicode version

Theorem addge01 10058
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
addge01  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )

Proof of Theorem addge01
StepHypRef Expression
1 0re 9592 . . . 4  |-  0  e.  RR
2 leadd2 10017 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
0  <_  B  <->  ( A  +  0 )  <_ 
( A  +  B
) ) )
31, 2mp3an1 1311 . . 3  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  B  <->  ( A  +  0 )  <_  ( A  +  B ) ) )
43ancoms 453 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  ( A  +  0 )  <_  ( A  +  B ) ) )
5 recn 9578 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
65addid1d 9775 . . . 4  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
76adantr 465 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  0 )  =  A )
87breq1d 4457 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  + 
0 )  <_  ( A  +  B )  <->  A  <_  ( A  +  B ) ) )
94, 8bitrd 253 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4447  (class class class)co 6282   RRcr 9487   0cc0 9488    + caddc 9491    <_ cle 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630
This theorem is referenced by:  addge02  10059  subge02  10064  addge01d  10136  nn0addge1  10838  elfz0add  11770  elfzmlbp  11779  flbi2  11917  hashdom  12411  atanlogaddlem  22972  ressatans  22993  axsegconlem7  23902  axsegconlem10  23905  cdj1i  27028  cdj3lem2b  27032
  Copyright terms: Public domain W3C validator