![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > addge01 | Structured version Unicode version |
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
addge01 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 9473 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | leadd2 9895 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mp3an1 1302 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ancoms 453 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | recn 9459 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | addid1d 9656 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | adantr 465 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | breq1d 4386 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4, 8 | bitrd 253 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1709 ax-7 1729 ax-8 1759 ax-9 1761 ax-10 1776 ax-11 1781 ax-12 1793 ax-13 1944 ax-ext 2429 ax-sep 4497 ax-nul 4505 ax-pow 4554 ax-pr 4615 ax-un 6458 ax-resscn 9426 ax-1cn 9427 ax-icn 9428 ax-addcl 9429 ax-addrcl 9430 ax-mulcl 9431 ax-mulrcl 9432 ax-mulcom 9433 ax-addass 9434 ax-mulass 9435 ax-distr 9436 ax-i2m1 9437 ax-1ne0 9438 ax-1rid 9439 ax-rnegex 9440 ax-rrecex 9441 ax-cnre 9442 ax-pre-lttri 9443 ax-pre-lttrn 9444 ax-pre-ltadd 9445 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1702 df-eu 2263 df-mo 2264 df-clab 2436 df-cleq 2442 df-clel 2445 df-nfc 2598 df-ne 2643 df-nel 2644 df-ral 2797 df-rex 2798 df-rab 2801 df-v 3056 df-sbc 3271 df-csb 3373 df-dif 3415 df-un 3417 df-in 3419 df-ss 3426 df-nul 3722 df-if 3876 df-pw 3946 df-sn 3962 df-pr 3964 df-op 3968 df-uni 4176 df-br 4377 df-opab 4435 df-mpt 4436 df-id 4720 df-po 4725 df-so 4726 df-xp 4930 df-rel 4931 df-cnv 4932 df-co 4933 df-dm 4934 df-rn 4935 df-res 4936 df-ima 4937 df-iota 5465 df-fun 5504 df-fn 5505 df-f 5506 df-f1 5507 df-fo 5508 df-f1o 5509 df-fv 5510 df-ov 6179 df-er 7187 df-en 7397 df-dom 7398 df-sdom 7399 df-pnf 9507 df-mnf 9508 df-xr 9509 df-ltxr 9510 df-le 9511 |
This theorem is referenced by: addge02 9937 subge02 9942 addge01d 10014 nn0addge1 10713 elfzmlbp 11578 elfzelfzadd 11595 flbi2 11752 hashdom 12230 atanlogaddlem 22410 ressatans 22431 axsegconlem7 23290 axsegconlem10 23293 cdj1i 25958 cdj3lem2b 25962 |
Copyright terms: Public domain | W3C validator |