Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addeqxfrd Structured version   Unicode version

Theorem addeqxfrd 27432
Description: Transfer two terms of an addtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020.)
Hypotheses
Ref Expression
addeqxfrd.a  |-  ( ph  ->  A  e.  CC )
addeqxfrd.b  |-  ( ph  ->  B  e.  CC )
addeqxfrd.c  |-  ( ph  ->  C  e.  CC )
addeqxfrd.d  |-  ( ph  ->  D  e.  CC )
addeqxfrd.1  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
Assertion
Ref Expression
addeqxfrd  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )

Proof of Theorem addeqxfrd
StepHypRef Expression
1 addeqxfrd.1 . . . 4  |-  ( ph  ->  ( A  +  B
)  =  ( C  +  D ) )
21oveq1d 6296 . . 3  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( C  +  D )  -  ( D  +  B ) ) )
3 addeqxfrd.c . . . . 5  |-  ( ph  ->  C  e.  CC )
4 addeqxfrd.d . . . . 5  |-  ( ph  ->  D  e.  CC )
53, 4addcomd 9785 . . . 4  |-  ( ph  ->  ( C  +  D
)  =  ( D  +  C ) )
65oveq1d 6296 . . 3  |-  ( ph  ->  ( ( C  +  D )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
72, 6eqtrd 2484 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( ( D  +  C )  -  ( D  +  B ) ) )
8 addeqxfrd.a . . 3  |-  ( ph  ->  A  e.  CC )
9 addeqxfrd.b . . 3  |-  ( ph  ->  B  e.  CC )
108, 4, 9pnpcan2d 9974 . 2  |-  ( ph  ->  ( ( A  +  B )  -  ( D  +  B )
)  =  ( A  -  D ) )
114, 3, 9pnpcand 9973 . 2  |-  ( ph  ->  ( ( D  +  C )  -  ( D  +  B )
)  =  ( C  -  B ) )
127, 10, 113eqtr3d 2492 1  |-  ( ph  ->  ( A  -  D
)  =  ( C  -  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1383    e. wcel 1804  (class class class)co 6281   CCcc 9493    + caddc 9498    - cmin 9810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-ltxr 9636  df-sub 9812
This theorem is referenced by:  2sqmod  27509
  Copyright terms: Public domain W3C validator