MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcos Structured version   Unicode version

Theorem addcos 13579
Description: Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
addcos  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  +  ( cos `  B ) )  =  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )

Proof of Theorem addcos
StepHypRef Expression
1 coscl 13532 . . 3  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
2 coscl 13532 . . 3  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
3 addcom 9669 . . 3  |-  ( ( ( cos `  A
)  e.  CC  /\  ( cos `  B )  e.  CC )  -> 
( ( cos `  A
)  +  ( cos `  B ) )  =  ( ( cos `  B
)  +  ( cos `  A ) ) )
41, 2, 3syl2an 477 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  +  ( cos `  B ) )  =  ( ( cos `  B
)  +  ( cos `  A ) ) )
5 halfaddsub 10672 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B )  /  2 )  +  ( ( A  -  B )  /  2
) )  =  A  /\  ( ( ( A  +  B )  /  2 )  -  ( ( A  -  B )  /  2
) )  =  B ) )
65simprd 463 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) )  =  B )
76fveq2d 5806 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  =  ( cos `  B ) )
85simpld 459 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) )  =  A )
98fveq2d 5806 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )  =  ( cos `  A ) )
107, 9oveq12d 6221 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) ) )  =  ( ( cos `  B
)  +  ( cos `  A ) ) )
11 halfaddsubcl 10671 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  / 
2 )  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC ) )
12 coscl 13532 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  e.  CC  ->  ( cos `  ( ( A  +  B )  / 
2 ) )  e.  CC )
13 coscl 13532 . . . . . 6  |-  ( ( ( A  -  B
)  /  2 )  e.  CC  ->  ( cos `  ( ( A  -  B )  / 
2 ) )  e.  CC )
14 mulcl 9480 . . . . . 6  |-  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  e.  CC  /\  ( cos `  ( ( A  -  B )  /  2 ) )  e.  CC )  -> 
( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  e.  CC )
1512, 13, 14syl2an 477 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( ( cos `  ( ( A  +  B )  /  2
) )  x.  ( cos `  ( ( A  -  B )  / 
2 ) ) )  e.  CC )
1611, 15syl 16 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  e.  CC )
17 sincl 13531 . . . . . 6  |-  ( ( ( A  +  B
)  /  2 )  e.  CC  ->  ( sin `  ( ( A  +  B )  / 
2 ) )  e.  CC )
18 sincl 13531 . . . . . 6  |-  ( ( ( A  -  B
)  /  2 )  e.  CC  ->  ( sin `  ( ( A  -  B )  / 
2 ) )  e.  CC )
19 mulcl 9480 . . . . . 6  |-  ( ( ( sin `  (
( A  +  B
)  /  2 ) )  e.  CC  /\  ( sin `  ( ( A  -  B )  /  2 ) )  e.  CC )  -> 
( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) )  e.  CC )
2017, 18, 19syl2an 477 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( ( sin `  ( ( A  +  B )  /  2
) )  x.  ( sin `  ( ( A  -  B )  / 
2 ) ) )  e.  CC )
2111, 20syl 16 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) )  e.  CC )
2216, 21, 16ppncand 9873 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) )  +  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  -  (
( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) )  =  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  +  ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
23 cossub 13574 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  =  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) )
24 cosadd 13570 . . . . 5  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( cos `  (
( ( A  +  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )  =  ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  -  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) )
2523, 24oveq12d 6221 . . . 4  |-  ( ( ( ( A  +  B )  /  2
)  e.  CC  /\  ( ( A  -  B )  /  2
)  e.  CC )  ->  ( ( cos `  ( ( ( A  +  B )  / 
2 )  -  (
( A  -  B
)  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B
)  /  2 )  +  ( ( A  -  B )  / 
2 ) ) ) )  =  ( ( ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) )  +  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  -  (
( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) ) )
2611, 25syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) ) )  =  ( ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  +  ( ( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) )  +  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  -  (
( sin `  (
( A  +  B
)  /  2 ) )  x.  ( sin `  ( ( A  -  B )  /  2
) ) ) ) ) )
27162timesd 10681 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) )  =  ( ( ( cos `  ( ( A  +  B )  /  2 ) )  x.  ( cos `  (
( A  -  B
)  /  2 ) ) )  +  ( ( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
2822, 26, 273eqtr4d 2505 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  (
( ( A  +  B )  /  2
)  -  ( ( A  -  B )  /  2 ) ) )  +  ( cos `  ( ( ( A  +  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) ) ) )  =  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
294, 10, 283eqtr2d 2501 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  +  ( cos `  B ) )  =  ( 2  x.  (
( cos `  (
( A  +  B
)  /  2 ) )  x.  ( cos `  ( ( A  -  B )  /  2
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   ` cfv 5529  (class class class)co 6203   CCcc 9394    + caddc 9399    x. cmul 9401    - cmin 9709    / cdiv 10107   2c2 10485   sincsin 13470   cosccos 13471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475  ax-mulf 9476
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7805  df-oi 7838  df-card 8223  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-rp 11106  df-ico 11420  df-fz 11558  df-fzo 11669  df-fl 11762  df-seq 11927  df-exp 11986  df-fac 12172  df-bc 12199  df-hash 12224  df-shft 12677  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-limsup 13070  df-clim 13087  df-rlim 13088  df-sum 13285  df-ef 13474  df-sin 13476  df-cos 13477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator