MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompi Structured version   Unicode version

Theorem addcompi 9059
Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompi  |-  ( A  +N  B )  =  ( B  +N  A
)

Proof of Theorem addcompi
StepHypRef Expression
1 pinn 9043 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 9043 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
3 nnacom 7052 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
41, 2, 3syl2an 474 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
5 addpiord 9049 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
6 addpiord 9049 . . . 4  |-  ( ( B  e.  N.  /\  A  e.  N. )  ->  ( B  +N  A
)  =  ( B  +o  A ) )
76ancoms 450 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  +N  A
)  =  ( B  +o  A ) )
84, 5, 73eqtr4d 2483 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( B  +N  A ) )
9 dmaddpi 9055 . . 3  |-  dom  +N  =  ( N.  X.  N. )
109ndmovcom 6249 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( B  +N  A ) )
118, 10pm2.61i 164 1  |-  ( A  +N  B )  =  ( B  +N  A
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1364    e. wcel 1761  (class class class)co 6090   omcom 6475    +o coa 6913   N.cnpi 9007    +N cpli 9008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-oadd 6920  df-ni 9037  df-pli 9038
This theorem is referenced by:  addcompq  9115  adderpqlem  9119
  Copyright terms: Public domain W3C validator