MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompi Structured version   Unicode version

Theorem addcompi 9282
Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompi  |-  ( A  +N  B )  =  ( B  +N  A
)

Proof of Theorem addcompi
StepHypRef Expression
1 pinn 9266 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 9266 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
3 nnacom 7276 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
41, 2, 3syl2an 477 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
5 addpiord 9272 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
6 addpiord 9272 . . . 4  |-  ( ( B  e.  N.  /\  A  e.  N. )  ->  ( B  +N  A
)  =  ( B  +o  A ) )
76ancoms 453 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( B  +N  A
)  =  ( B  +o  A ) )
84, 5, 73eqtr4d 2518 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( B  +N  A ) )
9 dmaddpi 9278 . . 3  |-  dom  +N  =  ( N.  X.  N. )
109ndmovcom 6456 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( B  +N  A ) )
118, 10pm2.61i 164 1  |-  ( A  +N  B )  =  ( B  +N  A
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6294   omcom 6694    +o coa 7137   N.cnpi 9232    +N cpli 9233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-oadd 7144  df-ni 9260  df-pli 9261
This theorem is referenced by:  addcompq  9338  adderpqlem  9342
  Copyright terms: Public domain W3C validator