MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcomi Structured version   Unicode version

Theorem addcomi 9559
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1  |-  A  e.  CC
mul.2  |-  B  e.  CC
Assertion
Ref Expression
addcomi  |-  ( A  +  B )  =  ( B  +  A
)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 mul.2 . 2  |-  B  e.  CC
3 addcom 9554 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
41, 2, 3mp2an 672 1  |-  ( A  +  B )  =  ( B  +  A
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    e. wcel 1756  (class class class)co 6090   CCcc 9279    + caddc 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-po 4640  df-so 4641  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-ltxr 9422
This theorem is referenced by:  addcomli  9560  add42i  9589  mvlladdi  9626  3m1e2  10437  fztpval  11517  fzo0to42pr  11615  binom2aiOLD  11975  0.999...  13340  ef01bndlem  13467  modxai  14096  pcoass  20595  iblitg  21245  tangtx  21966  eff1o  22004  ang180lem2  22205  log2ublem2  22341  basellem9  22425  ppiub  22542  bposlem8  22629  lgsdir2lem1  22661  lgsdir2lem2  22662  lgsdir2lem3  22663  lgsdir2lem5  22665  ax5seglem7  23180  ipasslem10  24238  normlem2  24512  normlem3  24513  norm-ii-i  24538  normpar2i  24557  fib5  26787  fib6  26788  problem3  27299  problem5  27301  quad3  27302  mblfinlem3  28428  fdc  28639  stoweidlem13  29806  comraddi  31112  mvrladdi  31117
  Copyright terms: Public domain W3C validator