MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcom Structured version   Unicode version

Theorem addcom 9765
Description: Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )

Proof of Theorem addcom
StepHypRef Expression
1 ax-1cn 9550 . . . . . . . . 9  |-  1  e.  CC
21a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
32, 2addcld 9615 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  +  1 )  e.  CC )
4 simpl 457 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
5 simpr 461 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
63, 4, 5adddid 9620 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  1 )  x.  ( A  +  B )
)  =  ( ( ( 1  +  1 )  x.  A )  +  ( ( 1  +  1 )  x.  B ) ) )
74, 5addcld 9615 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
8 1p1times 9750 . . . . . . 7  |-  ( ( A  +  B )  e.  CC  ->  (
( 1  +  1 )  x.  ( A  +  B ) )  =  ( ( A  +  B )  +  ( A  +  B
) ) )
97, 8syl 16 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  1 )  x.  ( A  +  B )
)  =  ( ( A  +  B )  +  ( A  +  B ) ) )
10 1p1times 9750 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
11 1p1times 9750 . . . . . . 7  |-  ( B  e.  CC  ->  (
( 1  +  1 )  x.  B )  =  ( B  +  B ) )
1210, 11oveqan12d 6303 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 1  +  1 )  x.  A )  +  ( ( 1  +  1 )  x.  B ) )  =  ( ( A  +  A )  +  ( B  +  B ) ) )
136, 9, 123eqtr3rd 2517 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  A )  +  ( B  +  B ) )  =  ( ( A  +  B )  +  ( A  +  B ) ) )
144, 4addcld 9615 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  A
)  e.  CC )
1514, 5, 5addassd 9618 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  A )  +  B )  +  B
)  =  ( ( A  +  A )  +  ( B  +  B ) ) )
167, 4, 5addassd 9618 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  +  A )  +  B
)  =  ( ( A  +  B )  +  ( A  +  B ) ) )
1713, 15, 163eqtr4d 2518 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  A )  +  B )  +  B
)  =  ( ( ( A  +  B
)  +  A )  +  B ) )
1814, 5addcld 9615 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  A )  +  B
)  e.  CC )
197, 4addcld 9615 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  A
)  e.  CC )
20 addcan2 9764 . . . . 5  |-  ( ( ( ( A  +  A )  +  B
)  e.  CC  /\  ( ( A  +  B )  +  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  A )  +  B )  +  B )  =  ( ( ( A  +  B )  +  A
)  +  B )  <-> 
( ( A  +  A )  +  B
)  =  ( ( A  +  B )  +  A ) ) )
2118, 19, 5, 20syl3anc 1228 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  A )  +  B )  +  B )  =  ( ( ( A  +  B )  +  A
)  +  B )  <-> 
( ( A  +  A )  +  B
)  =  ( ( A  +  B )  +  A ) ) )
2217, 21mpbid 210 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  A )  +  B
)  =  ( ( A  +  B )  +  A ) )
234, 4, 5addassd 9618 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  A )  +  B
)  =  ( A  +  ( A  +  B ) ) )
244, 5, 4addassd 9618 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  A
)  =  ( A  +  ( B  +  A ) ) )
2522, 23, 243eqtr3d 2516 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( A  +  B ) )  =  ( A  +  ( B  +  A ) ) )
265, 4addcld 9615 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  A
)  e.  CC )
27 addcan 9763 . . 3  |-  ( ( A  e.  CC  /\  ( A  +  B
)  e.  CC  /\  ( B  +  A
)  e.  CC )  ->  ( ( A  +  ( A  +  B ) )  =  ( A  +  ( B  +  A ) )  <->  ( A  +  B )  =  ( B  +  A ) ) )
284, 7, 26, 27syl3anc 1228 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( A  +  B
) )  =  ( A  +  ( B  +  A ) )  <-> 
( A  +  B
)  =  ( B  +  A ) ) )
2925, 28mpbid 210 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767  (class class class)co 6284   CCcc 9490   1c1 9493    + caddc 9495    x. cmul 9497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-ltxr 9633
This theorem is referenced by:  addcomi  9770  add12  9792  add32  9793  add42  9796  subsub23  9825  pncan2  9827  addsub  9831  addsub12  9833  addsubeq4  9835  sub32  9853  pnpcan2  9859  ppncan  9861  sub4  9864  negsubdi2  9878  ltaddsub2  10027  leaddsub2  10029  leltadd  10036  ltaddpos2  10043  addge02  10063  conjmul  10261  recp1lt1  10443  recreclt  10444  avgle1  10778  avgle2  10779  avgle  10780  nn0nnaddcl  10827  xaddcom  11437  fzen  11703  fzshftral  11765  flzadd  11927  modadd2mod  12005  nn0ennn  12057  seradd  12117  bernneq2  12261  hashfz  12450  revccat  12703  2cshwcom  12747  shftval2  12871  shftval4  12873  crim  12911  absmax  13125  climshft2  13368  summolem3  13499  binom1dif  13608  isumshft  13614  arisum  13634  mertenslem1  13656  addcos  13770  demoivreALT  13797  dvdsaddr  13884  divalglem4  13913  divalgb  13921  gcdaddm  14026  hashdvds  14164  phiprmpw  14165  pythagtriplem2  14200  mulgnndir  15974  cnaddablx  16677  cnaddabl  16678  zaddablx  16679  cncrng  18238  ioo2bl  21061  icopnfcnv  21205  uniioombllem3  21757  fta1glem1  22329  plyremlem  22462  fta1lem  22465  vieta1lem1  22468  vieta1lem2  22469  aaliou3lem2  22501  dvradcnv  22578  pserdv2  22587  reeff1olem  22603  ptolemy  22650  logcnlem4  22782  cxpsqrt  22840  atandm2  22964  atandm4  22966  atanlogsublem  23002  2efiatan  23005  dvatan  23022  birthdaylem2  23038  emcllem2  23082  fsumharmonic  23097  wilthlem1  23098  wilthlem2  23099  basellem8  23117  1sgmprm  23230  perfectlem2  23261  pntibndlem1  23530  pntibndlem2  23532  pntlemd  23535  pntlemc  23536  cnaddablo  25056  addinv  25058  cdj3lem3b  27063  isarchi3  27421  archiabllem1a  27425  archiabllem2c  27429  bpolydiflem  29421  cos2h  29651  tan2h  29652  eldioph2lem1  30325  addcomgi  30971  fourierdlem26  31461  fz0addcom  31828
  Copyright terms: Public domain W3C validator