MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcn2 Unicode version

Theorem addcn2 11944
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 16789 and df-cncf 18214 are not yet available to us. See addcn 18201 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 10257 . . 3  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 981 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 simprl 735 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
4 simpl2 964 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
5 simprr 736 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
63, 4, 5pnpcan2d 9075 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  +  v )  -  ( B  +  v ) )  =  ( u  -  B
) )
76fveq2d 5381 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  =  ( abs `  ( u  -  B ) ) )
87breq1d 3930 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( u  +  v )  -  ( B  +  v
) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( A  /  2 ) ) )
9 simpl3 965 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
104, 5, 9pnpcand 9074 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  +  v )  -  ( B  +  C ) )  =  ( v  -  C
) )
1110fveq2d 5381 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  +  v )  -  ( B  +  C )
) )  =  ( abs `  ( v  -  C ) ) )
1211breq1d 3930 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( ( B  +  v )  -  ( B  +  C
) ) )  < 
( A  /  2
)  <->  ( abs `  (
v  -  C ) )  <  ( A  /  2 ) ) )
138, 12anbi12d 694 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
14 ax-addcl 8677 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
1514adantl 454 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  +  v )  e.  CC )
164, 9addcld 8734 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  C )  e.  CC )
174, 5addcld 8734 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  +  v )  e.  CC )
18 simpl1 963 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
1918rpred 10269 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
20 abs3lem 11699 . . . . 5  |-  ( ( ( ( u  +  v )  e.  CC  /\  ( B  +  C
)  e.  CC )  /\  ( ( B  +  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  +  v )  -  ( B  +  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2115, 16, 17, 19, 20syl22anc 1188 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  +  v )  -  ( B  +  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  +  v )  -  ( B  +  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2213, 21sylbird 228 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
2322ralrimivva 2597 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
24 breq2 3924 . . . . . 6  |-  ( y  =  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  <  y  <->  ( abs `  ( u  -  B
) )  <  ( A  /  2 ) ) )
2524anbi1d 688 . . . . 5  |-  ( y  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
2625imbi1d 310 . . . 4  |-  ( y  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
27262ralbidv 2547 . . 3  |-  ( y  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
28 breq2 3924 . . . . . 6  |-  ( z  =  ( A  / 
2 )  ->  (
( abs `  (
v  -  C ) )  <  z  <->  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) )
2928anbi2d 687 . . . . 5  |-  ( z  =  ( A  / 
2 )  ->  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
( A  /  2
)  /\  ( abs `  ( v  -  C
) )  <  ( A  /  2 ) ) ) )
3029imbi1d 310 . . . 4  |-  ( z  =  ( A  / 
2 )  ->  (
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
31302ralbidv 2547 . . 3  |-  ( z  =  ( A  / 
2 )  ->  ( A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( A  /  2 )  /\  ( abs `  ( v  -  C ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) ) )
3227, 31rcla42ev 2829 . 2  |-  ( ( ( A  /  2
)  e.  RR+  /\  ( A  /  2 )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( A  / 
2 )  /\  ( abs `  ( v  -  C ) )  < 
( A  /  2
) )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  +  v )  -  ( B  +  C
) ) )  < 
A ) )
332, 2, 23, 32syl3anc 1187 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  +  v )  -  ( B  +  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616    + caddc 8620    < clt 8747    - cmin 8917    / cdiv 9303   2c2 9675   RR+crp 10233   abscabs 11596
This theorem is referenced by:  subcn2  11945  climadd  11982  rlimadd  11993  addcn  18201
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598
  Copyright terms: Public domain W3C validator