MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclsr Structured version   Unicode version

Theorem addclsr 9348
Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addclsr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  R. )

Proof of Theorem addclsr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9325 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 6194 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  ( A  +R  [ <. z ,  w >. ]  ~R  ) )
32eleq1d 2519 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
4 oveq2 6195 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  +R  [ <. z ,  w >. ]  ~R  )  =  ( A  +R  B ) )
54eleq1d 2519 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  +R  [
<. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  +R  B )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
6 addsrpr 9340 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  )
7 addclpr 9285 . . . . . . 7  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  +P.  z
)  e.  P. )
8 addclpr 9285 . . . . . . 7  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  +P.  w
)  e.  P. )
97, 8anim12i 566 . . . . . 6  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
109an4s 822 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  z )  e.  P.  /\  ( y  +P.  w )  e. 
P. ) )
11 opelxpi 4966 . . . . 5  |-  ( ( ( x  +P.  z
)  e.  P.  /\  ( y  +P.  w
)  e.  P. )  -> 
<. ( x  +P.  z
) ,  ( y  +P.  w ) >.  e.  ( P.  X.  P. ) )
12 enrex 9335 . . . . . 6  |-  ~R  e.  _V
1312ecelqsi 7253 . . . . 5  |-  ( <.
( x  +P.  z
) ,  ( y  +P.  w ) >.  e.  ( P.  X.  P. )  ->  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
1410, 11, 133syl 20 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  [ <. (
x  +P.  z ) ,  ( y  +P.  w ) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
156, 14eqeltrd 2537 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) )
161, 3, 5, 152ecoptocl 7288 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  ( ( P.  X.  P. ) /.  ~R  ) )
1716, 1syl6eleqr 2548 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  +R  B
)  e.  R. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   <.cop 3978    X. cxp 4933  (class class class)co 6187   [cec 7196   /.cqs 7197   P.cnp 9124    +P. cpp 9126    ~R cer 9131   R.cnr 9132    +R cplr 9136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-inf2 7945
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-int 4224  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-1st 6674  df-2nd 6675  df-recs 6929  df-rdg 6963  df-1o 7017  df-oadd 7021  df-omul 7022  df-er 7198  df-ec 7200  df-qs 7204  df-ni 9139  df-pli 9140  df-mi 9141  df-lti 9142  df-plpq 9175  df-mpq 9176  df-ltpq 9177  df-enq 9178  df-nq 9179  df-erq 9180  df-plq 9181  df-mq 9182  df-1nq 9183  df-rq 9184  df-ltnq 9185  df-np 9248  df-plp 9250  df-ltp 9252  df-plpr 9322  df-enr 9324  df-nr 9325  df-plr 9326
This theorem is referenced by:  dmaddsr  9350  map2psrpr  9375  axaddf  9410  axmulf  9411  axaddrcl  9417  axaddass  9421  axmulass  9422  axdistr  9423
  Copyright terms: Public domain W3C validator